首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:152502--1)

基于相位调制的光纤干涉型光学相控阵扫描特性研究

Scanning Characteristics of Fiber-Optic Interferometric Phased Array Based on Phase Modulation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为解决光纤干涉型相控阵在实际实用中的扫描控制问题,建立了一种基于相位调制的光纤干涉型光学相控阵扫描控制的理论模型。该模型以光纤作为相控阵阵元,采用傍轴近似和远场近似,通过加载在相位调制器上的扫描控制电压实现光束的扫描;讨论了一种扫描电压的[-π,π]加载方式;对扫描角度、阵元间距,以及相位调制器参数间的关系进行数值分析,还验证了相控阵路数与调制系数对扫描分辨率的影响。结果表明:通过[-π,π]的扫描电压加载方式,可以把控制电压控制在±Vπ(半波电压)范围内;在相控阵阵元间距一定时,随着相位调制器长高比的增大,在小角度范围内,扫描角度呈线性增大;相控阵路数越多,调制系数越小,分辨率也就越高。在一维光纤阵元间距为125 μm时,当相位调制器的长高比为10 3量级时,最大扫描角度可达0.1 rad;当调制系数为0.3,一维光纤阵元为50时,扫描分辨率可达210。

Abstract

A theoretical model of the scanning control for a fiber-optic interferometric phased array based on phase modulation is proposed to overcome the limitation of scanning control for a fiber-optic interferometric phased array in practice. This model uses optical fibers as the phased-array elements, adopts paraxial and far-field approximations, and uses the scanning-control voltage loaded on the phase modulator to realize the scanning of the beam. A [-π, π] charging scheme of scanning voltage is proposed. The relationship among scanning angle, element spacing, and parameters of the phase modulator is numerically analyzed, and the influences of the phased-array path number and modulation coefficient on scanning resolution are verified numerically as well. Results show that the voltage is controlled within ±Vπ (half-wave voltage) by the [-π, π] charging scheme; when the spacing of the phased-array elements is constant, the scanning angle increases linearly with an increase in the length-to-height ratio of the phase modulator in the small-angle range; the higher the number of phased-array beams and the smaller the modulation coefficient, the higher the resolution. The maximum scanning angle can reach 0.1 rad when the length-to-height ratio of the phase modulator is 10 3 orders of magnitude and the spacing of the fiber-array elements is 125 μm, and the scanning resolution is 210 when the modulation coefficient is 0.3 and the number of fiber-optic elements is 50.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.152502

所属栏目:光电子学

收稿日期:2019-02-26

修改稿日期:2019-03-11

网络出版日期:2019-08-01

作者单位    点击查看

任远中:中国人民解放军陆军炮兵防空兵学院研究生大队, 安徽 合肥 230031
柴金华:中国人民解放军陆军炮兵防空兵学院电子工程教研室, 安徽 合肥 230031

联系人作者:柴金华(ch170626@sina.com)

【1】McManamon P. An overview of optical phased array technology and status. Proceedings of SPIE. 5947, (2005).

【2】Li R Q, Wang Z, Cui C et al. Research on beam steering of waveguide phased array. Optical Technique. 44(2), 129-132(2018).
李润泉, 王智, 崔粲 等. 阵列波导激光相控阵光束偏转特性研究. 光学技术. 44(2), 129-132(2018).

【3】Yan Y W, An J M, Zhang J S et al. Research progress of optical phased array technology. Laser & Optoelectronics Progress. 55(2), (2018).
颜跃武, 安俊明, 张家顺 等. 光学相控阵技术研究进展. 激光与光电子学进展. 55(2), (2018).

【4】Wang Y R, Mei H P, Kang L et al. Experimental investigation on retro-reflective laser imaging in turbulent atmosphere. Chinese Journal of Lasers. 45(4), (2018).
王钰茹, 梅海平, 康丽 等. 湍流大气中折返路径激光成像探测实验. 中国激光. 45(4), (2018).

【5】Huang Z W, Wang C Y, Peng L H et al. Beam optimization of liquid crystal optical phased array based on bat algorithm. Laser & Optoelectronics Progress. 55(8), (2018).
黄志伟, 王春阳, 彭丽华 等. 基于蝙蝠算法的液晶光学相控阵波束优化. 激光与光电子学进展. 55(8), (2018).

【6】Davis S R, Farca G, Rommel S D et al. Analog, non-mechanical beam-steerer with 80 degree field of regard. Proceedings of SPIE. 6971, (2008).

【7】Peng L H, Li M Q, Huang Z W et al. Method of sidelobe suppression with waveguide optical phased array. Laser & Optoelectronics Progress. 55(8), (2018).
彭丽华, 李明秋, 黄志伟 等. 光波导光学相控阵边瓣压缩方法研究. 激光与光电子学进展. 55(8), (2018).

【8】Wang Y B, Liang L, Chen Y Y et al. Improved performance of optical phased arrays assisted by transparent graphene nanoheaters and air trenches. RSC Advances. 8(15), 8442-8449(2018).

【9】Chung S W, Abediasl H and Hashemi H. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE Journal of Solid-State Circuits. 53(1), 275-296(2018).

【10】Koh K H and Lee C. A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage. Journal of Microelectromechanical Systems. 21(5), 1124-1135(2012).

【11】Yoo B W, Megens M, Chan T et al. Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering. Optics Express. 21(10), 12238-12248(2013).

【12】Chai J H and Chen F. Methodology of filter-type multi-dithering phase control for quasi parallel light interference. Acta Physica Sinica. 67(1), (2018).
柴金华, 陈飞. 准平行光干涉的滤波型多抖动相控方法研究. 物理学报. 67(1), (2018).

【13】Li J L, Shi S X, Wang G S et al. Electro-control properties of a new type of rapid optical waveguide electro-optic scanner. Journal of Xidian University. 29(6), 764-767(2002).
李家立, 石顺祥, 王广生 等. 新型光波导阵列电光快速扫描器的馈电特性. 西安电子科技大学学报(自然科学版). 29(6), 764-767(2002).

【14】Xue J J, Liu C B, Li J et al. Optimization design of optical waveguide phased array structure. Acta Optica Sinica. 32(s1), (2012).
薛婧婧, 刘春波, 李瑾 等. 光波导相控阵阵列结构的优化设计. 光学学报. 32(s1), (2012).

【15】Du S J, Zhang L X, Wang G X et al. Low side lobe on-chip two dimensional optical phased array based on the hill climbing algorithm. Acta Photonica Sinica. 47(9), (2018).
杜书剑, 章羚璇, 王国玺 等. 基于爬坡算法的片上低栅瓣二维光学相控阵. 光子学报. 47(9), (2018).

【16】Zhao K H and Zhong X H. Optics: volume 1. 157, 162-171(0).
赵凯华, 钟锡华. . 光学:, . 上册. 157, 162-171(0).

【17】Yariv A and Yeh P. Optical electronics in modern communications. 365-384(2009).
阿曼·亚里夫, 波奇·耶赫, . 光子学: 现代通信光电子学. 365-384(2009).

【18】Li C D, Yan Y, Hu W T et al. Theoretical study on the pumping efficiency of coupling system described by paraxial approximation. Acta Optica Sinica. 15(8), 991-994(1995).
李传东, 鄢雨, 胡文涛 等. 旁轴近似描述的耦合系统模式耦合效率研究. 光学学报. 15(8), 991-994(1995).

引用该论文

Yuanzhong Ren, Jinhua Chai. Scanning Characteristics of Fiber-Optic Interferometric Phased Array Based on Phase Modulation[J]. Laser & Optoelectronics Progress, 2019, 56(15): 152502

任远中, 柴金华. 基于相位调制的光纤干涉型光学相控阵扫描特性研究[J]. 激光与光电子学进展, 2019, 56(15): 152502

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF