Photonics Research, 2019, 7 (9): 09000994, Published Online: Aug. 8, 2019   

Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices Download: 751次

Author Affiliations
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China
3 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
Abstract
Active control of metamaterial properties with high tunability of both resonant intensity and frequency is essential for advanced terahertz (THz) applications, ranging from spectroscopy and sensing to communications. Among varied metamaterials, plasmon-induced transparency (PIT) has enabled active control with giant sensitivity by embedding semiconducting materials. However, there is still a stringent challenge to achieve dynamic responses in both intensity and frequency modulation. Here, an anisotropic THz active metamaterial device with an ultrasensitive modulation feature is proposed and experimentally studied. A radiative-radiative-coupled PIT system is established, with a frequency shift of 0.26 THz in its sharp transparent windows by polarization rotation. Enabled by high charge-carrier mobility and longer diffusion lengths, we utilize a straightforwardly spin-coated MAPbI3 film acting as a photoactive medium to endow the device with high sensitivity and ultrafast speed. When the device is pumped by an ultralow laser fluence, the PIT transmission windows at 0.86 and 1.12 THz demonstrate a significant reduction for two polarizations, respectively, with a full recovery time of 561 ps. In addition, we numerically prove the validity that the investigated resonator structure is sensitive to the optically induced conductivity. The hybrid system not only achieves resonant intensity and frequency modulations simultaneously, but also preserves the all-optical-induced switching merits with high sensitivity and speed, which enriches multifunctional subwavelength metamaterial devices at THz frequencies.

Junhu Zhou, Yuze Hu, Tian Jiang, Hao Ouyang, Han Li, Yizhen Sui, Hao Hao, Jie You, Xin Zheng, Zhongjie Xu, Xiang’ai Cheng. Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices[J]. Photonics Research, 2019, 7(9): 09000994.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!