首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170609--1)

微晶玻璃光纤的研究进展

Research Progress in Glass Ceramic Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光纤激光器在工业、医疗和国防等领域应用广泛,而增益光纤的研究对光纤激光器的发展起着重要的推动作用。微晶玻璃光纤将强晶体场环境引入光纤中,在高效率、可调谐光纤激光器领域具有独特而重要的应用前景。此外,微晶玻璃光纤中可控制地析出非线性晶体,实现激光频率转换,进一步拓宽光纤的应用领域。介绍了微晶玻璃光纤的概念与光学特性;重点讲述稀土离子掺杂、过渡金属离子掺杂、量子点掺杂及倍频微晶玻璃光纤的研究进展;对微晶玻璃光纤的制备技术进行深入分析与讨论;最后对微晶玻璃光纤的未来发展前景进行展望。

Abstract

Fiber lasers have been widely used in industry, medicine, military defense,etc. The investigations of gain fibers play an important role for accelerating the development of fiber lasers. Glass ceramic fiber, possessing strong crystal field environments, is a promising material for application in high-efficiency and tunable fiber lasers. Moreover, the glass ceramic fibers containing nonlinear crystals can be used for the frequency conversion of lasers and further broaden the application of fibers. This paper introduces the concepts and optical properties of glass ceramic fibers, emphatically describes the research progresses of rare-earth ions doping, transition metal ions doping, quantum dots doping and second harmonic generation glass ceramic fibers, and discusses the fabrication techniques of glass ceramic fibers. Finally, the applications of glass ceramic fibers in the future are envisioned.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170609

所属栏目:功能光纤

基金项目:国家自然科学基金;

收稿日期:2019-04-25

修改稿日期:2019-06-03

网络出版日期:2019-09-01

作者单位    点击查看

方再金:暨南大学光子技术研究院, 广东 广州 511443
郑书培:暨南大学光子技术研究院, 广东 广州 511443
关柏鸥:暨南大学光子技术研究院, 广东 广州 511443
邱建荣:浙江大学光电科学与工程学院, 浙江 杭州 310027

联系人作者:关柏鸥, 邱建荣(tguanbo@jnu.edu.cn, qjr@zju.edu.cn)

备注:国家自然科学基金;

【1】Nilsson J and Payne D N. High-power fiber lasers. Science. 332(6032), 921-922(2011).

【2】Chen H, Jin C, Huang B et al. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications. Nature Photonics. 10(8), 529-533(2016).

【3】Correa R A, Lopez E A et al. . Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nature Photonics. 8(11), 865-870(2014).

【4】Jauregui C, Limpert J and Tünnermann A. High-power fibre lasers. Nature Photonics. 7(11), 861-867(2013).

【5】Wang W C, Zhou B, Xu S H et al. Recent advances in soft optical glass fiber and fiber lasers. Progress in Materials Science. 101, 90-171(2019).

【6】Zhou S F, Li C Y, Yang G et al. Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid. Advanced Functional Materials. 23(43), 5436-5443(2013).

【7】Lin C G, Bocker C and Rüssel C. Nanocrystallization in oxyfluoride glasses controlled by amorphous phase separation. Nano Letters. 15(10), 6764-6769(2015).

【8】Li X Y, Chen D Q, Huang F et al. Phase-selective nanocrystallization of NaLnF4 in aluminosilicate glass for random laser and 940 nm LED-excitable upconverted luminescence. Laser & Photonics Reviews. 12(7), (2018).

【9】Zhou S F, Jiang N, Wu B T et al. Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials. Advanced Functional Materials. 19(13), 2081-2088(2009).

【10】Dong G P, Wu G B, Fan S H et al. Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses. Journal of Non-Crystalline Solids. 383, 192-195(2014).

【11】Takahashi Y, Benino Y, Fujiwara T et al. Optical second order nonlinearity of transparent Ba2TiGe2O8 crystallized glasses. Applied Physics Letters. 81(2), 223-225(2002).

【12】Tick P A, Borrelli N F and Reaney I M. The relationship between structure and transparency in glass-ceramic materials. Optical Materials. 15(1), 81-91(2000).

【13】Tick P A. Are low-loss glass-ceramic optical waveguides possible?. Optics Letters. 23(24), 1904-1905(1998).

【14】Samson B N, Tick P A and Borrelli N F. Efficient neodymium-doped glass-ceramic fiber laser and amplifier. Optics Letters. 26(3), 145-147(2001).

【15】Reben M, Wasylak J and Dorosz D. Tellurite glasses for optical fibre fabrication. Proceedings of SPIE. 7120, (2008).

【16】Augustyn E. elechower M, Stró D, et al. The microstructure of erbium-ytterbium co-doped oxyfluoride glass-ceramic optical fibers . Optical Materials. 34(6), 944-950(2012).

【17】Kang S L, Fang Z J, Huang X J et al. Precisely controllable fabrication of Er 3+-doped glass ceramic fibers: novel mid-infrared fiber laser materials . Journal of Materials Chemistry C. 5(18), 4549-4556(2017).

【18】Peng W C, Fang Z J, Ma Z J et al. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb 3+-Er 3+ codoped CaF2 nanocrystals . Nanotechnology. 27(40), (2016).

【19】Downey K E, Samson B N, Beall G H et al. Cr 4+∶forsterite nanocrystalline glass-ceramic fiber . [C]//Conference on Lasers Electro-Optics, May 6-10, 2001, Baltimore, Maryland United States. Washington, D.C.: OSA. CTuP1, (2001).

【20】Samson B N, Pinckney L R, Wang J et al. Nickel-doped nanocrystalline glass-ceramic fiber. Optics Letters. 27(15), 1309-1311(2002).

【21】Fang Z J, Zheng S P, Peng W C et al. Ni 2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment . Optics Express. 23(22), 28258-28263(2015).

【22】Fang Z J, Zheng S P, Peng W C et al. Fabrication and characterization of glass-ceramic fiber-containing Cr 3+-doped ZnAl2O4 nanocrystals . Journal of the American Ceramic Society. 98(9), 2772-2775(2015).

【23】Chen J J, Shi Z, Zhou S F et al. Optically active materials: local chemistry engineering in doped photonic glass for optical pulse generation. Advanced Optical Materials. 7(6), (2019).

【24】Yu Y Z, Fang Z J, Ma C S et al. Mesoscale engineering of photonic glass for tunable luminescence. NPG Asia Materials. 8(10), (2016).

【25】Hreibi A, Gér?me F, Auguste J L et al. Semiconductor-doped liquid-core optical fiber. Optics Letters. 36(9), 1695-1697(2011).

【26】Meissner K E, Holton C and Spillman W B. Jr. Optical characterization of quantum dots entrained in microstructured optical fibers. Physica E: Low-Dimensional Systems and Nanostructures. 26, 377-381(2005).

【27】Yu H C Y, Argyros A, Barton G et al. . Quantum dot and silica nanoparticle doped polymer optical fibers. Optics Express. 15(16), 9989-9994(2007).

【28】Pang F F, Sun X L, Guo H R et al. A PbS quantum dots fiber amplifier excited by evanescent wave. Optics Express. 18(13), 14024-14030(2010).

【29】Watekar P R, Ju S and Han W T. Bend insensitive optical fiber with ultralow bending loss in the visible wavelength band. Optics Letters. 34(24), 3830-3832(2009).

【30】Huang X J, Fang Z J, Peng Z X et al. Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers. Optics Express. 25(17), 19691-19700(2017).

【31】Huang X J, Fang Z J, Kang S L et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission. Journal of Materials Chemistry C. 5(31), 7927-7934(2017).

【32】Takahashi Y, Kitamura K, Benino Y et al. Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass. Applied Physics Letters. 86(9), (2005).

【33】Fang Z J, Xiao X S, Wang X et al. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers. Scientific Reports. 7, (2017).

引用该论文

Zaijin Fang, Shupei Zheng, Baiou Guan, Jianrong Qiu. Research Progress in Glass Ceramic Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170609

方再金, 郑书培, 关柏鸥, 邱建荣. 微晶玻璃光纤的研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170609

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF