首页 > 论文 > 光学学报 > 40卷 > 18期(pp:1827001--1)

基于三拉盖尔高斯腔的机械振子基态冷却研究

Ground-State Cooling of Mechanical Resonator in Three-Laguerre-Gaussian-Cavity

王婧  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

将机械振子冷却到基态是实现机械振子量子操控的关键。利用电磁感应透明冷却法,研究了边带不可分辨区域中三拉盖尔高斯腔光力学系统的机械振子基态冷却。在该系统中,两个附加腔场分别与标准的腔光力学系统中的腔场发生了耦合。通过选择系统的最优参数,光学涨落谱从洛伦兹线型变成类似三能级原子系统中电磁诱导透明谱线的形式,冷却和加热速率的不对称使得机械振子被冷却到基态。研究结果为三拉盖尔高斯腔系统中机械振子的冷却提供了理论参考。

Abstract

To cool a mechanical resonator to its ground-state is the key to realize the quantum manipulation of this mechanical resonator. We propose a cooling method based on electromagnetically-induced-transparency (EIT) and investigate the ground-state cooling of a mechanical resonator in a three-Laguerre-Gaussian-cavity optomechanical system, where two auxiliary cavities are coupled to the original one in the standard optomechanical system, respectively. When the optimal parameters are chosen, the optical fluctuation spectrum changes from Lorentzian shape to EIT-like one in a three-level atomic system. The asymmetry between cooling and heating rates makes it possible to realize the ground-state cooling of a mechanical resonator. The research results here provide a theoretical guidance for the cooling of mechanical resonators in three-Laguerre-Gaussian-cavity systems.

广告组4 - 量子光学(超导单光子,符合计数器)
补充资料

中图分类号:O431

DOI:10.3788/AOS202040.1827001

所属栏目:量子光学

收稿日期:2020-04-20

修改稿日期:2020-06-11

网络出版日期:2020-09-01

作者单位    点击查看

王婧:通化师范学院物理学院, 吉林 通化 134000

联系人作者:王婧(pwl1207wj@163.com)

【1】Fan L. Controllable quantum entanglement based on cavity structure [J]. Laser & Optoelectronics Progress. 2019, 56(4): 042701.
陆繁. 基于腔结构的可控量子纠缠 [J]. 激光与光电子学进展. 2019, 56(4): 042701.

【2】Lin J. Preparing Bell state by using dissipative process in directly coupled cavities [J]. Laser & Optoelectronics Progress. 2019, 56(24): 242703.
林杰. 直接耦合腔中通过耗散通道制备Bell态 [J]. 激光与光电子学进展. 2019, 56(24): 242703.

【3】Agarwal G S, Huang S M. Electromagnetically induced transparency in mechanical effects of light [J]. Physical Review A. 2010, 81(4): 041803.

【4】Yan X B. Optomechanically induced transparency and gain [J]. Physical Review A. 2020, 101(4): 043820.

【5】Wang T, Zheng M H, Bai C H, et al. Normal-mode splitting and optomechanically induced absorption, amplification, and transparency in a hybrid optomechanical system [J]. Annalen der Physik. 2018, 530(10): 1800228.

【6】Yang Q, Hou B P, Lai D. Local modulation of double optomechanically induced transparency and amplification [J]. Optics Express. 2017, 25(9): 9697-9711.

【7】Maayani S, Dahan R, Kligerman Y, et al. Flying couplers above spinning resonators generate irreversible refraction [J]. Nature. 2018, 558(7711): 569-572.

【8】Li B J, Huang R, Xu X W, et al. Nonreciprocal unconventional photon blockade in a spinning optomechanical system [J]. Photonics Research. 2019, 7(6): 000630.

【9】Jiang C, Song L N, Li Y. Directional amplifier in an optomechanical system with optical gain [J]. Physical Review A. 2018, 97(5): 053812.

【10】He B, Yang L, Jiang X S, et al. Transmission nonreciprocity in a mutually coupled circulating structure [J]. Physical Review Letters. 2018, 120(20): 203904.

【11】Yan X B, Lu H L, Gao F, et al. Perfect optical nonreciprocity in a double-cavity optomechanical system [J]. Frontiers of Physics. 2019, 14(5): 52601.

【12】Zhang L W, Li X L, Yang L. Optical nonreciprocity with blue-detuned driving in two-cavity optomechanics [J]. Acta Physical Sinica. 2019, 68(17): 170701.
张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性 [J]. 物理学报. 2019, 68(17): 170701.

【13】Bai C H, Wang D Y, Zhang S, et al. Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system [J]. Annalen der Physik. 2019, 531(7): 1800271.

【14】Wang J, Tian X D, Liu Y M, et al. Entanglement manipulation via Coulomb interaction in an optomechanical cavity assisted by two-level cold atoms [J]. Laser Physics. 2018, 28(6): 065202.

【15】Yan X B, Deng Z J, Tian X D, et al. Entanglement optimization of filtered output fields in cavity optomechanics [J]. Optics Express. 2019, 27(17): 24393-24402.

【16】Lu X Y, Liao J Q, Tian L, et al. Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity [J]. Physical Review A. 2015, 91(1): 013834.

【17】Agarwal G S, Huang S M. Strong mechanical squeezing and its detection [J]. Physical Review A. 2016, 93(4): 043844.

【18】Genes C, Ritsch H, Drewsen M, et al. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency [J]. Physical Review A. 2011, 84(5): 051801.

【19】Guo Y J, Li K, Nie W J, et al. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system [J]. Physical Review A. 2014, 90(5): 053841.

【20】Liu Y M, Bai C H, Wang D Y, et al. Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble [J]. Optics Express. 2018, 26(5): 6143-6157.

【21】Li L C, Luo R H, Liu L J, et al. Double-passage ground-state cooling induced by quantum interference in the hybrid optomechanical system [J]. Scientific Reports. 2018, 8(1): 14276.

【22】Zhang S, Zhang J Q, Zhang J, et al. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom [J]. Optics Express. 2014, 22(23): 28118-28131.

【23】Liu Y C, Xiao Y F, Luan X S, et al. Coupled cavities for motional ground-state cooling and strong optomechanical coupling [J]. Physical Review A. 2015, 91(3): 033818.

【24】Lai D G, Zou F, Hou B P, et al. Simultaneous cooling of coupled mechanical resonators in cavity optomechanics [J]. Physical Review A. 2018, 98(2): 023860.

【25】Xia K Y, Evers J. Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference [J]. Physical Review Letters. 2009, 103(22): 227203.

【26】Wu Q. Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system [J]. Chinese Physics B. 2016, 25(1): 010304.

【27】Cohadon P F, Heidmann A, Pinard M. Cooling of a mirror by radiation pressure [J]. Physical Review Letters. 1999, 83(16): 3174-3177.

【28】Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics [J]. Reviews of Modern Physics. 2014, 86(4): 1391.

【29】Wang Q, Ge Y, Liu L Z, et al. Quantum coherent control in hybrid atom optomechanical systems [J]. Acta Optica Sinica. 2016, 36(11): 1102001.
王琦, 戈燕, 刘练珍, 等. 混合原子光机械系统中的量子相干控制 [J]. 光学学报. 2016, 36(11): 1102001.

【30】Guo Y B, Xiao Y, Yu Y F, et al. Optical bistability and entanglement in a nonlinear optomechanical system [J]. Acta Optica Sinica. 2015, 35(10): 1027002.
郭永宾, 肖银, 於亚飞, 等. 光学学报 [J]. . 非线性光机械系统中的双稳性与纠缠. 2015, 35(10): 1027002.

【31】Genes C, Vitali D, Tombesi P, et al. Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes [J]. Physical Review A. 2008, 77(3): 033804.

【32】Bhattacharya M, Giscard P, Meystre P. Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror [J]. Physical Review A. 2008, 77(1): 013827.

【33】Bhattacharya M, Meystre P. Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror [J]. Physical Review Letters. 2007, 99(15): 153603.

【34】Liu Y M. Study on ground state cooling of mechanical resonator based on optomechanical system [D]. Yanji: Yanbian University. 2019.
刘禹沐. 腔光力系统中机械振子基态冷却研究 [D]. 延吉: 延边大学. 2019.

引用该论文

Wang Jing. Ground-State Cooling of Mechanical Resonator in Three-Laguerre-Gaussian-Cavity[J]. Acta Optica Sinica, 2020, 40(18): 1827001

王婧. 基于三拉盖尔高斯腔的机械振子基态冷却研究[J]. 光学学报, 2020, 40(18): 1827001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF