首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1002004--1)

皮秒激光切割PBO纤维增强复合材料

Cutting of PBO Fiber-Reinforced Composites Using Picosecond Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

一次性整体成型或传统的加工方式已不能满足聚对苯撑苯并双噁唑(PBO)纤维增强复合材料精密加工和装配的要求。首先分别采用波长为355 nm的紫外皮秒激光和波长为1030 nm的红外皮秒激光对PBO纤维增强复合材料进行切割加工,加工过程中采用渐进式焦点下移和多道扫描策略;然后采用扫描电子显微镜观察了复合材料的切割截面形貌,分析了材料的物理去除机制和加工热损伤;最后研究了激光功率、扫描速度和方向、脉冲重复频率等激光参数与切割质量、切割效率之间的关系。实验结果表明:紫外皮秒激光可以实现“冷加工”和光化学效应,得到了较高的切割质量;激光焦点随加工进程下移可以有效提高加工质量并改善材料切割表面的一致性。研究结果表明,采用8 W、400 kHz、1000 mm/s的激光参数可以进行高质、高效的材料加工。

Abstract

The precision machining and assembly requirements of poly(p-phenylene-benzobisoxazole) (PBO) fiber-reinforced composites cannot be satisfied using direct integral forming or traditional machining methods. First, we cut PBO fiber-reinforced compositions using different picosecond lasers (with wavelengths of 355 nm and 1030 nm), apply a progressively downshifted focus, and implement multi-pass scanning strategy. The cross-section morphologies of the processed samples were observed using scanning electron microscopy, and the mechanisms of material removal and thermal damage of the materials were analyzed. Finally, the cutting quality and efficiency were related to the laser parameters (laser power, scanning speed and direction, and pulse repetition rate). The UV picosecond laser achieved “cold processing” and a photochemical effect with high cutting quality. The downshift of laser focus with the machining process effectively improved the machining quality and consistency of the material cutting surface. The high-quality and efficient material processing can be achieved with laser power of 8 W, repetition rate of 400 kHz and scanning speed of 1000 mm/s.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN249

DOI:10.3788/CJL202047.1002004

所属栏目:激光制造

基金项目:国家重点研发计划、国家自然科学基金;

收稿日期:2020-03-24

修改稿日期:2020-06-01

网络出版日期:2020-10-01

作者单位    点击查看

张学聪:上海大学物理系, 上海 200444中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
钱静:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
付强:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
王关德:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
刘军:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
崔红:西安航天复合材料研究所, 陕西 西安 710025
张承双:西安航天复合材料研究所, 陕西 西安 710025
包艳玲:西安航天复合材料研究所, 陕西 西安 710025
戴晔:上海大学物理系, 上海 200444
赵全忠:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800

联系人作者:戴晔(zqz@siom.ac.cn); 赵全忠(zqz@siom.ac.cn);

备注:国家重点研发计划、国家自然科学基金;

【1】Kumar S, Dang T D, Arnold F E, et al. Synthesis, structure, and properties of PBO/SWNT composites [J]. Macromolecules. 2002, 35(24): 9039-9043.Kumar S, Dang T D, Arnold F E, et al. Synthesis, structure, and properties of PBO/SWNT composites [J]. Macromolecules. 2002, 35(24): 9039-9043.

【2】Hua J S, Li Y X, Liu X Y, et al. Graphene/MWNT/poly(p-phenylenebenzobisoxazole) multiphase nanocomposite via solution prepolymerization with superior microwave absorption properties and thermal stability [J]. The Journal of Physical Chemistry C. 2017, 121(2): 1072-1081.

【3】Stock J W, Zaeh M F, Spaeth J P. Remote laser cutting of CFRP: influence of the edge quality on fatigue strength [J]. Proceedings of SPIE. 2014, 8963: 89630T.

【4】Zhang L L, Jiang Z H, Zhang W, et al. A review of laser processing fiber-reinforced flexible composite material [J]. Applied Laser. 2012, 32(3): 238-243.
张玲玲, 姜兆华, 张伟, 等. 超强度纤维柔性复合材料激光加工工艺研究 [J]. 应用激光. 2012, 32(3): 238-243.

【5】Tagliaferri V, Di Ilio A, Visconti C. Laser cutting of fibre-reinforced polyesters [J]. Composites. 1985, 16(4): 317-325.

【6】Fenoughty K A, Jawaid A, Pashby I R. Machining of advanced engineering materials using traditional and laser techniques [J]. Journal of Materials Processing Technology. 1994, 42(4): 391-400.

【7】Yung K C, Mei S M, Yue T M. A study of the heat-affected zone in the UV YAG laser drilling of GFRP materials [J]. Journal of Materials Processing Technology. 2002, 122(2/3): 278-285.

【8】Freitag C, Wiedenmann M, Negel J P, et al. High-quality processing of CFRP with a 1.1-kW picosecond laser [J]. Applied Physics A. 2015, 119(4): 1237-1243.

【9】Salama A, Li L, Mativenga P, et al. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites [J]. Applied Physics A. 2016, 122(2): 1-11.

【10】Lau W S, Lee W B, Pang S Q. Pulsed Nd∶YAG laser cutting of carbon fibre composite materials [J]. CIRP Annals. 1990, 39(1): 179-182.

【11】Staehr R, Bluemel S, Hansen P, et al. The influence of moisture content on the heat affected zone and the resulting in-plane shear strength of laser cut thermoplastic CFRP [J]. Plastics Rubber and Composites. 2015, 44(3): 111-116.

【12】Thomas H, Bernhard K, Frank S. Micromachining with picosecond laser pulses [J]. Industrial Laser Solutions. 2004, 199(10): 34.

【13】Chen G Y, Zhu Z C, Yin J, et al. Experiment on ablation threshold of single crystal diamond produced by femtosecond laser processing [J]. Chinese Journal of Lasers. 2019, 46(4): 0402001.
陈根余, 朱智超, 殷赳, 等. 单晶金刚石飞秒激光加工的烧蚀阈值实验 [J]. 中国激光. 2019, 46(4): 0402001.

【14】Takahashi K, Tsukamoto M, Masuno S, et al. Influence of laser scanning conditions on CFRP processing with a pulsed fiber laser [J]. Journal of Materials Processing Technology. 2015, 222: 110-121.

【15】Li Z L, Zheng H Y, Lim G C, et al. Study on UV laser machining quality of carbon fibre reinforced composites [J]. Composites Part A. 2010, 41(10): 1403-1408.

【16】Anisimov S I, Kapeliovich B L, Perelman T L, et al. Electron emission from metal surfaces exposed to ultrashort laser pulses [J]. Soviet Physics-JETP. 1974, 39(2): 375-378.

【17】Jiang Y. Research on cutting carbon-fiber reinforced plastic with picosecond pulsed laser and its connection with aluminum alloy [D]. Changsha: Hunan University. 2017.
蒋翼. 碳纤维复合材料皮秒激光切割及其与铝合金连接研究 [D]. 长沙: 湖南大学. 2017.

【18】Romoli L, Fischer F, Kling R. A study on UV laser drilling of PEEK reinforced with carbon fibers [J]. Optics and Lasers in Engineering. 2012, 50(3): 449-457.

【19】Zhu X N, Bao W X. Fundamentals of ultrashort pulse laser and its applications [J]. Chinese Journal of Lasers. 2019, 46(12): 1200001.
朱晓农, 包文霞. 超短脉冲激光及其相关应用的一些基本知识 [J]. 中国激光. 2019, 46(12): 1200001.

【20】Jia B S, Tang H P, Su C Z, et al. Removal of surface coating of resin matrix composites by pulsed laser [J]. Chinese Journal of Lasers. 2019, 46(12): 1202010.
贾宝申, 唐洪平, 苏春洲, 等. 脉冲激光去除树脂基复合材料表面涂层 [J]. 中国激光. 2019, 46(12): 1202010.

【21】Patel R S, Bovatsek J. Processing benefits of high repetition rate and high average power 355 nm laser for micromachining of microelectronics packaging materials [J]. Proceedings of SPIE. 2007, 6459: 64590H.

【22】Srinivasan R, Maynebanton V. Self-developing photoetching of poly(ethylene terephthalate) films by far-ultraviolet excimer laser radiation [J]. Applied Physics Letters. 1982, 41(6): 576-578.

【23】Goeke A, Emmelmann C. Influence of laser cutting parameters on CFRP part quality [J]. Physics Procedia. 2010, 5: 253-258.

【24】Al-Sulaiman F A, Yilbas B S, Ahsan M. CO2 laser cutting of a carbon/carbon multi-lamelled plain-weave structure [J]. Journal of Materials Processing Technology. 2006, 173(3): 345-351.

【25】Wahab M S, Rahim E A, Rahman N A, et al. Laser cutting characteristic on the laminated carbon fiber reinforced plastics (CFRP) composite of aerospace structure panel [J]. Advanced Materials Research. 2012, 576: 503-506.

【26】Kononenko T V, Freitag C, Komlenok M S, et al. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses [J]. Journal of Applied Physics. 2014, 115(10): 103107.

【27】Niino H, Harada Y, Anzai K J, et al. 2D/3D laser cutting of carbon fiber reinforced plastic (CFRP) by fiber laser irradiation [J]. Proceedings of SPIE. 2015, 9353: 935303.

【28】Weber R, Freitag C, Kononenko T V, et al. Short-pulse laser processing of CFRP [J]. Physics Procedia. 2012, 39(9): 137-146.

引用该论文

Zhang Xuecong,Qian Jing,Fu Qiang,Wang Guande,Liu Jun,Cui Hong,Zhang Chengshuang,Bao Yanling,Dai Ye,Zhao Quanzhong. Cutting of PBO Fiber-Reinforced Composites Using Picosecond Lasers[J]. Chinese Journal of Lasers, 2020, 47(10): 1002004

张学聪,钱静,付强,王关德,刘军,崔红,张承双,包艳玲,戴晔,赵全忠. 皮秒激光切割PBO纤维增强复合材料[J]. 中国激光, 2020, 47(10): 1002004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF