首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:231403--1)

离散激光相变硬化蠕墨铸铁应力场数值模拟

Numerical Simulation of Stress Field of Laser Phase Transformation Hardening Vermicular Graphite Cast Iron Based on Beam Discretization

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了研究基于光束离散的激光相变硬化蠕墨铸铁RuT300材料的应力分布状态,构建了离散激光相变硬化RuT300弹塑性本构模型,分析温度对热应力和残余应力的影响。结果表明:材料表面较大的热压应力分布与二维离散点阵光斑相对应,激光快速加热引起的材料各部分温度差异使得模型X轴路径上的热应力呈波浪形分布,离散光斑加载区域的X、Y方向热应力峰值为-635 MPa,约为Z方向的1.8倍,随着深度的增加,模型截面热应力逐渐降低;材料表面激光加载区域的残余应力大于非加载区域,X、Y方向的残余拉应力为主要残余应力,应力值在200 MPa 左右,X轴路径上X方向的残余应力最大;随着激光功率的增加,残余应力峰值增大,材料受较大残余应力影响的区域扩大,延长激光加热时间时,加载区域残余应力峰值的变化幅度在2.4 MPa内。

Abstract

Herein, the stress distribution state of laser phase transformation hardening vermicular graphite cast iron RuT300 is studied based on beam discretization using a constructed elastic-plastic constitutive model of the discrete laser phase transformation hardening RuT300. Additionally, the model considers the effect of temperature on thermal stress and residual stress. The results demonstrate that the large thermal stress on the material''s surface corresponds to a two-dimensional discrete lattice spot. Since rapid laser heating causes each part of the material to experience a different temperature, the thermal stress distribution is wavy along the X-axis path of the model. The maximum thermal stress in the X and Y directions of the discrete spot loading region is found to be -635 MPa, which is 1.8 times that found in the Z direction. In each section of the model, the thermal stress decreases gradually with an increase in the depth; the residual stress value in the laser loading region on the surface of the material is larger than that in the nonloading region. The residual tensile stresses in the X and Y directions of the model constitute the primary residual stress, with a value of approximately 200 MPa. The residual stress in the X direction along the X-axis path is the largest among the three directions. As the laser power increases, the peak residual stress value increases, and the area of the material affected by large residual stresses increases. However, when the laser heating time is prolonged, the change in the peak residual stress value in the loading region is within the range of 2.4 MPa.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.231403

所属栏目:激光器与激光光学

基金项目:国家自然科学基金、内蒙古自然科学基金、中央高校基本科研业务费资助项目、中央高校基本科研业务费项目中国民航大学专项、中国民航大学蓝天青年科研资金资助;

收稿日期:2019-05-05

修改稿日期:2019-06-26

网络出版日期:2019-12-01

作者单位    点击查看

庞铭:中国民航大学机场学院, 天津 300300
谭雯丹:中国民航大学机场学院, 天津 300300

联系人作者:庞铭(pangming1980@126.com)

备注:国家自然科学基金、内蒙古自然科学基金、中央高校基本科研业务费资助项目、中央高校基本科研业务费项目中国民航大学专项、中国民航大学蓝天青年科研资金资助;

【1】Pina J C, Shafqat S, Kouznetsova V G, et al. Microstructural study of the mechanical response of compacted graphite iron: an experimental and numerical approach [J]. Materials Science and Engineering: A. 2016, 658: 439-449.

【2】Kim S, Cockcroft S L, Omran A M, et al. Mechanical, wear and heat exposure properties of compacted graphite cast iron at elevated temperatures [J]. Journal of Alloys and Compounds. 2009, 487(1/2): 253-257.

【3】Tan W D, Pang M, Jiang G Y, et al. Numerical simulation of temperature field in laser phase-transformation hardening of highly-enhanced diesel engine valve seats [J]. Laser & Optoelectronics Progress. 2018, 55(11): 111601.
谭雯丹, 庞铭, 江国业, 等. 高强化柴油机气门座激光相变硬化温度场的数值模拟 [J]. 激光与光电子学进展. 2018, 55(11): 111601.

【4】Wu W P, Liu J W, Wang H, et al. Microstructure and tribological performance of NiAl-SiC composite coating by laser cladding [J]. Laser & Optoelectronics Progress. 2018, 55(9): 091406.
吴王平, 刘剑文, 王辉, 等. 激光熔覆NiAl-SiC复合涂层的组织与摩擦性能 [J]. 激光与光电子学进展. 2018, 55(9): 091406.

【5】Wang H J, Li Y L, Li P. Orthogonal experiment on laser cutting of AZ31B magnesium aluminum alloys [J]. Laser & Optoelectronics Progress. 2018, 55(10): 101405.
王洪建, 李永亮, 李平. 激光切割AZ31B镁铝合金正交实验研究 [J]. 激光与光电子学进展. 2018, 55(10): 101405.

【6】Liu Y N, Sun R L, Zhang T G, et al. Effect of CeO2 content on microstructure and properties of laser cladded self-lubricant coatings [J]. Laser & Optoelectronics Progress. 2018, 55(11): 111401.
刘亚楠, 孙荣禄, 张天刚, 等. CeO2含量对激光熔覆自润滑涂层微观组织和性能的影响 [J]. 激光与光电子学进展. 2018, 55(11): 111401.

【7】Yu G, Nie S Z, Zheng C Y, et al. Beam transformation technology of pixellated Dammann grating in laser processing [J]. Chinese Journal of Lasers. 2008, 35(11): 1841-1847.
虞钢, 聂树真, 郑彩云, 等. 用于激光加工中的矩形孔径Dammann光栅光束变换技术 [J]. 中国激光. 2008, 35(11): 1841-1847.

【8】Ba F H, Gan C H, Wu W, et al. Study of surface modification by pulse laser of ductile iron [J]. Chinese Journal of Lasers. 2003, 30(7): 663-667.
巴发海, 甘翠华, 吴炜, 等. 球铁材料脉冲激光表面强化的实验研究 [J]. 中国激光. 2003, 30(7): 663-667.

【9】Li Z Y, Zhong M L, Zhang H J, et al. Effect of laser spot alloying 42CrMo steel on the fatigue crack growth rate [J]. Applied Laser. 2007, 27(1): 1-4.
李正阳, 钟敏霖, 张红军, 等. 激光点状合金化对42CrMo钢疲劳裂纹扩展速率的影响 [J]. 应用激光. 2007, 27(1): 1-4.

【10】Wang H L. The investigation on spot array laser alloying on nodular cast iron hot roller [D]. Beijing: Tsinghua University. 2007.
王海龙. 球墨铸铁热轧辊表面激光点状合金化技术研究 [D]. 北京: 清华大学. 2007.

【11】Spranger F. Hilgenberg K. Dispersion behavior of TiB2 particles in AISI D2 tool steel surfaces during pulsed laser dispersing, their influence on material properties. Applied Surface Science[J]. 2019, 467/468: 493-504.

【12】Pang M, Tan W D, Fu W, et al. Numerical simulation study on stress field of laser transformation hardening vermicular graphite cast iron valve seat [J]. Hot Working Technology. 2018, 47(24): 218-222, 225.
庞铭, 谭雯丹, 付威, 等. 激光相变硬化蠕墨铸铁气门座应力场数值模拟研究 [J]. 热加工工艺. 2018, 47(24): 218-222, 225.

【13】Pang M, Tan W D. Numerical simulation of temperature field during laser transformation hardening vermicular graphite cast iron based on beam discretization [J]. Laser & Optoelectronics Progress. 2019, 56(19): 191404.
庞铭, 谭雯丹. 基于光束离散的激光相变硬化蠕墨铸铁温度场数值模拟 [J]. 激光与光电子学进展. 2019, 56(19): 191404.

【14】Zhang Z. Numerical simulation of laser transformation hardening on the inner wall of pump barrel and study on the mechanism of rapid nitriding Dongying: China University of Petroleum[D]. 0, 2013.
张哲. 泵筒内壁激光相变硬化数值模拟及催渗机理研究 东营: 中国石油大学[D]. 0, 2013.

【15】Zhang Z, Han B, Wang Y, et al. Effects of the shape of workpiece on temperature and stress field distribution during laser transformation hardening [J]. Chinese Journal of Lasers. 2012, 39(8): 0803001.
张哲, 韩彬, 王勇, 等. 工件形状对激光相变硬化温度场和应力场的影响 [J]. 中国激光. 2012, 39(8): 0803001.

【16】Gong C, Wang L F, Zhu G X, et al. Numerical simulation of residual stress in 316L stainless steel cladding layer by laser additive manufacturing [J]. Applied Laser. 2018, 38(3): 402-408.
龚丞, 王丽芳, 朱刚贤, 等. 激光增材制造316L不锈钢熔覆层残余应力的数值模拟研究 [J]. 应用激光. 2018, 38(3): 402-408.

【17】Bian H Y, Zhai Q X, Qu S, et al. The evolution of temperature field and stress field in laser deposition repair GH4169 with substrate preheating [J]. Applied Laser. 2017, 37(3): 327-332.
卞宏友, 翟泉星, 曲伸, 等. 基体预热下激光沉积修复GH4169合金温度场和应力场演变 [J]. 应用激光. 2017, 37(3): 327-332.

【18】Yao G F, Chen G N. Numerical simulation of transient thermal field and residual stress in laser melting process [J]. Applied Laser. 2002, 22(2): 241-243, 222.
姚国凤, 陈光南. 激光熔凝加工中瞬时温度场及残余应力数值模拟 [J]. 应用激光. 2002, 22(2): 241-243, 222.

【19】Li M Y, Han B, Cai C B, et al. 36(5): 25-28 [J]. stress fields of laser cladded Ni-based coating. Transactions of the China Welding Institution. 2015, 32: 114.
李美艳, 韩彬, 蔡春波, 等. 36(5): 25-28 [J]. . 激光熔覆镍基合金温度场和应力场数值模拟. 焊接学报. 2015, 32: 114.

【20】Gu J Q, Luo F, Yao J H. Numerical simulation of residual stress during laser cladding [J]. Laser & Optoelectronics Progress. 2010, 47(10): 101401.
顾建强, 骆芳, 姚建华. 激光熔覆过程残余应力的数值模拟 [J]. 激光与光电子学进展. 2010, 47(10): 101401.

【21】Wen S, Dong A P, Lu Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting [J]. Acta Metallurgica Sinica. 2018, 54(3): 393-403.
文舒, 董安平, 陆燕玲, 等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟 [J]. 金属学报. 2018, 54(3): 393-403.

引用该论文

Pang Ming,Tan Wendan. Numerical Simulation of Stress Field of Laser Phase Transformation Hardening Vermicular Graphite Cast Iron Based on Beam Discretization[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231403

庞铭,谭雯丹. 离散激光相变硬化蠕墨铸铁应力场数值模拟[J]. 激光与光电子学进展, 2019, 56(23): 231403

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF