首页 > 论文 > 中国激光 > 46卷 > 9期(pp:906002--1)

基于Armijo线搜索的布里渊散射谱图像降噪算法

Brillouin Scattering Spectral Image Denoising Algorithm Based on Armijo Line Search

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为提高布里渊光时域分析(BOTDA)系统的信噪比,减少累计平均次数,改善实时性的同时保障测量精度,提出了基于Armijo线搜索的BOTDA散射谱图像降噪算法。该算法从能量扩散的角度利用偏微分方程的各向异性保证降噪图像具有良好的边缘保持特性,基于图像的局部特征提高了传感系统的测量精度。运用Armijo回溯线搜索法自适应选取最速下降步长,对256次累计平均的BOTDA实验数据进行降噪处理,只需两步迭代,即可达到最佳降噪效果,有效减少了数据采集时间,提高了系统的实时性。

Abstract

To improve the signal-to-noise ratio of a Brillouin optical time-domain analysis (BOTDA) system, reduce the cumulative average number, and improve the real-time performance while ensuring measurement accuracy, a BOTDA scattering spectrum image denoising algorithm based on Armijo line search is proposed. The method uses the anisotropy of the partial differential equation from the perspective of energy diffusion to ensure that the noise-reduced image has good edge-holding characteristics and improves the measurement accuracy of the sensing system based on local features. The Armijo retrospective search method is used to adaptively select the steepest descending step size, and 256 cumulative average BOTDA experimental data are denoised. The best noise reduction effect can be achieved in just two iterations, which effectively reduces data acquisition time, thereby improving the real-time performance of the system.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0906002

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、河北省自然科学基金;

收稿日期:2019-04-10

修改稿日期:2019-05-27

网络出版日期:2019-09-01

作者单位    点击查看

尚秋峰:华北电力大学电子与通信工程系, 河北 保定 071003
秦文婕:华北电力大学电子与通信工程系, 河北 保定 071003
胡雨婷:华北电力大学电子与通信工程系, 河北 保定 071003

联系人作者:秦文婕(15176267905@163.com)

备注:国家自然科学基金、河北省自然科学基金;

【1】Shang Q F and Hu Y T. Research progress of dynamic measurement technology based on Brillouin optical time-domain analysis. Laser & Optoelectronics Progress. 55(10), (2018).
尚秋峰, 胡雨婷. 基于布里渊光时域分析的动态测量技术研究进展. 激光与光电子学进展. 55(10), (2018).

【2】Bao X Y and Chen L. Recent progress in Brillouin scattering based fiber sensors. Sensors. 11(4), 4152-4187(2011).

【3】Li C L. Research on the system of Brillouin optical fiber sensor based on multi-wavelength light source. Nanjing: Nanjing University. (2012).
李存磊. 基于多波长光源的布里渊光纤传感系统研究. 南京: 南京大学. (2012).

【4】Farahani M A, Colpitts B G and Castillo-Guerra E. Reduction of measurement time in BOTDA sensors using wavelet shrinkage. Proceedings of SPIE. 7753, (2011).

【5】Farahani M A. Wylie M T V, Castillo-Guerra E, et al. Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques. Journal of Lightwave Technology. 30(8), 1134-1142(2012).

【6】Soto M A, Ramírez J A and Thévenaz L. Intensifying Brillouin distributed fibre sensors using image processing. Proceedings of SPIE. 9634, (2015).

【7】Soto M A, Ramírez J A and Thévenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nature Communications. 7, (2016).

【8】Soto M A, Ramírez J A and Thévenaz L. Image and video denoising for distributed optical fibre sensors. Proceedings of SPIE. 10323, (2017).

【9】Meng Y J and Zha J F. Application of kuwahara filter in Brillouin optical time-domain analysis sensing image denoising. Laser & Optoelectronics Progress. 55(7), (2018).
孟彦杰, 查剑锋. Kuwahara滤波在布里渊光时域分析传感图像去噪中的应用. 激光与光电子学进展. 55(7), (2018).

【10】Meng Y J, Zha J F and Liu Y X. Intensifying the SNR of BOTDA using adaptive constrained least squares filtering. Optics Communications. 437, 219-225(2019).

【11】Hou Y Q, Zhang H, Yang X L et al. Research on total variational image restoration and comparison of three numerical methods. C]∥The 2nd National Conference on Signal Processing and Application Conference, October 12, 2008, Nanning, Guangxi.[S.l.]: China High-Tech Industrialization Association. 301-303(2008).
侯榆青, 张欢, 杨旭朗 等. 全变分图像复原的研究及其三种数值方法比较. C]∥全国第二届信号处理与应用学术会议论文集, 2018-10-12,广西, 南宁.[S.l.]: 中国高科技产业化研究会. 301-303(2008).

【12】Rudin L I, Osher S and Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena. 60, 259-268(1992).

【13】Rudin L I and Osher S. Total variation based image restoration with free local constraints. [C]∥1st International Conference on Image Processing, November 13-16, 1994, Austin, TX, USA. New York: IEEE. 31-35(1994).

【14】Vogel C R and Oman M E. Iterative methods for total variation denoising. SIAM Journal on Scientific Computing. 17(1), 227-238(1996).

【15】Li B and Li G. Armijo-based adaptive stability transformation method. Chinese Journal of Computational Mechanics. 35(4), 399-407(2018).
李彬, 李刚. 基于Armijo准则的自适应稳定转换法. 计算力学学报. 35(4), 399-407(2018).

引用该论文

Qiufeng Shang,Wenjie Qin,Yuting Hu. Brillouin Scattering Spectral Image Denoising Algorithm Based on Armijo Line Search[J]. Chinese Journal of Lasers, 2019, 46(9): 0906002

尚秋峰,秦文婕,胡雨婷. 基于Armijo线搜索的布里渊散射谱图像降噪算法[J]. 中国激光, 2019, 46(9): 0906002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF