首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170608--1)

面向2~3 μm光纤激光应用的稀土掺杂氟磷酸盐玻璃光纤的研究进展

Research Progress of Rare Earth Doped Fluorophosphate Glass Fiber for 2-3 μm Fiber Laser Application

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

2~3 μm光纤激光在军事、传感、通信、生物医疗和环境监测等领域具有非常广阔的应用前景。利用稀土掺杂氟磷酸盐玻璃制备光纤是直接获得2~3 μm光纤激光的有效途径。本研究综述了国内外面向2~3 μm光纤激光应用的稀土掺杂氟磷酸盐玻璃光纤的研究概况,指出了研究中存在的问题,并对其发展前景进行了展望。

Abstract

Fiber lasers with 2-3 μm center wavelength have broad application prospects in the military, sensing, communication, biomedical, and environmental monitoring fields. The use of the rare earth doped fluorophosphate glass to prepare optical fiber is an effective method for directly fabricating 2-3 μm fiber lasers. The current research progress of rare earth doped fluorophosphate glass fibers for 2-3 μm fiber laser application is reviewed. In addition, the development and current challenges associated with rare earth doped fluorophosphate glass fiber are explored.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170608

所属栏目:功能光纤

基金项目:国家自然科学基金;

收稿日期:2019-05-21

修改稿日期:2019-06-25

网络出版日期:2019-09-01

作者单位    点击查看

田颖:中国计量大学光电材料与器件研究院, 浙江 杭州 310018
徐时清:中国计量大学光电材料与器件研究院, 浙江 杭州 310018
黄飞飞:中国计量大学光电材料与器件研究院, 浙江 杭州 310018
张军杰:中国计量大学光电材料与器件研究院, 浙江 杭州 310018

联系人作者:田颖, 徐时清(tianyingcjlu@163.com, shiqingxu75@163.com)

备注:国家自然科学基金;

【1】Sun X, She J B, Li X H et al. Effect of Ba(PO3)2 addition on the optical properties of Tm 3+-doped fluorophosphate glasses . Optical Materials Express. 9(3), 1233-1245(2019).

【2】Gao X Y, Tian Y, Liu Q H et al. Efficient 2 μm emission and energy transfer mechanism of Ho 3+ doped fluorophosphate glass sensitized by Er 3+ ions . Infrared Physics & Technology. 91, 200-205(2018).

【3】Qi F W, Huang F F, Wang T et al. Influence of Tm 3+ ions on the amplification of Ho 3+: 5I7→ 5I8 transition in fluoride glass modified by Al(PO3)3 for applications in mid-infrared optics . Chinese Optics Letters. 15(5), (2017).

【4】Moskalev I S, Fedorov V V and Mirov S B. Tunable, single-frequency, and multi-watt continuous-wave Cr 2+∶ZnSe lasers . Optics Express. 16(6), 4145-4153(2008).

【5】Jackson S D. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics. 6(7), 423-431(2012).

【6】Zlatanovic S, Park J S, Moro S et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nature Photonics. 4(8), 561-564(2010).

【7】Petersen C R, M?ller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics. 8(11), 830-834(2014).

【8】Gauthier J C, Fortin V, Carrée J Y et al. Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber. Optics Letters. 41(8), 1756-1759(2016).

【9】Huang K, Gan J W, Zeng J et al. Observation of spectral mode splitting in a pump-enhanced ring cavity for mid-infrared generation. Optics Express. 27(8), 11766-11775(2019).

【10】Zu Y Q, Zhang C, Wu Y J et al. Graphene oxide for diode-pumped Tm∶YLF passively Q-switched laser at 2 μm. Chinese Optics Letters. 16(2), (2018).

【11】Ren Y, Qin Z P, Xie G Q et al. 2 μm mode-locking laser performances of sol-gel-fabricated large-core Tm-doped silica fiber. Chinese Optics Letters. 16(2), (2018).

【12】Jackson S D, Sabella A, Hemming A et al. High-power 83 W holmium-doped silica fiber laser operating with high beam quality. Optics Letters. 32(3), 241-243(2007).

【13】Hemming A, Bennetts S, Simakov N et al. Development of resonantly cladding-pumped holmium-doped fibre lasers. Proceedings of SPIE. 8237, (2012).

【14】Jha A, Richards B, Jose G et al. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Progress in Materials Science. 57(8), 1426-1491(2012).

【15】Lin C G, Rüssel C and Dai S X. Chalcogenide glass-ceramics: functional design and crystallization mechanism. Progress in Materials Science. 93, 1-44(2018).

【16】Huang F F, Liu X Q, Hu L L et al. Optical properties and energy transfer processes of Ho 3+/Er 3+- codoped fluorotellurite glass under 1550 nm excitation for 2.0 μm applications . Journal of Applied Physics. 116(3), (2014).

【17】Tian Y. Spectroscopic properties of mid-infrared emissions in rare-earth ions doped fluorophosphate glass. Shanghai: University of Chinese Academy of Sciences. (2012).
田颖. 掺稀土氟磷酸盐玻璃中红外发光特性的研究. 上海: 中国科学院大学. (2012).

【18】Kuan P W, Fan X K, Li X et al. High-power 2.04 μm laser in an ultra-compact Ho-doped lead germanate fiber. Optics Letters. 41(13), 2899-2902(2016).

【19】Li L X, Wang W C, Zhang C F et al. 2.0 μm Nd 3+/Ho 3+-doped tungsten tellurite fiber laser . Optical Materials Express. 6(9), 2904-2914(2016).

【20】Hu J, Menyuk C R, Wei C L et al. Highly efficient cascaded amplification using Pr 3+-doped mid-infrared chalcogenide fiber amplifiers . Optics Letters. 40(16), 3687-3690(2015).

【21】Eichhorn M and Jackson S D. Comparative study of continuous wave Tm 3+-doped silica and fluoride fiber lasers . Applied Physics B. 90(1), 35-41(2008).

【22】Wu J F, Yao Z D, Zong J et al. Highly efficient high-power thulium-doped germanate glass fiber laser. Optics Letters. 32(6), 638-640(2007).

【23】Hanna D C. McCarthy M J, Perry I R, et al. Efficient high-power continuous-wave operation of monomode Tm-doped fibre laser at 2 μm pumped by Nd∶YAG laser at 1.064 μm. Electronics Letters. 25(20), 1365-1366(1989).

【24】Richards B D O, Evans C A et al. . Numerical rate equation modelling of a 1.61 μm pumped ~2 μm Tm 3+-doped tellurite fibre laser . Proceedings of SPIE. 6998, (2008).

【25】Feng Y T, Meng J Q and Chen W B. Research development of eye-safe all-solid-state lasers. Laser & Optoelectronics Progress. 44(10), 33-38(2007).
冯宇彤, 孟俊清, 陈卫标. 人眼安全全固态激光器研究进展. 激光与光电子学进展. 44(10), 33-38(2007).

【26】Peng B and Izumitani T. Optical properties, fluorescence mechanisms and energy transfer in Tm 3+, Ho 3+ and Tm 3+ -Ho 3+ doped near-infrared laser glasses, sensitized by Yb 3+ . Optical Materials. 4(6), 797-810(1995).

【27】Oh K, Morse T F, Kilian A et al. Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser. Optics Letters. 19(4), 278-280(1994).

【28】Jackson S D and Mossman S. Diode-cladding-pumped Yb 3+, Ho 3+-doped silica fiber laser operating at 2.1 μm . Applied Optics. 42(18), 3546-3549(2003).

【29】Pollnan M and Jackson S D. Erbium 3-μm fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics. 7(1), 30-40(2001).

【30】Tsang Y H. El-Taher A E, King T A, et al. Efficient 2.96 micron dysprosium-doped ZBLAN fibre laser pumped at 1.3 micron. Proceedings of SPIE. 6190, (2006).

【31】Schweizer T, Hewak D W, Samson B N et al. Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass. Optics Letters. 21(19), 1594-1596(1996).

【32】Pollnau M and Jackson S D. Advances in mid-infrared fiber lasers. ∥ Ebrahim-Zadeh M, Sorokina I T. Mid-infrared coherent sources and applications. Dordrecht: Springer. 315-346(2008).

【33】Smart R G, Carter J N, Tropper A C et al. Continuous-wave oscillation of Tm 3+ -doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm . Optics Communications. 82(5/6), 563-570(1991).

【34】Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser. Optics Letters. 34(20), 3062-3064(2009).

【35】Li J F, Hudson D D and Jackson S D. High-power diode-pumped fiber laser operating at 3 μm. Optics Letters. 36(18), 3642-3644(2011).

【36】Majewski M R, Woodward R I and Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm. Optics Letters. 43(5), 971-974(2018).

【37】Zhang J J, He D B, Duan Z C et al. Progress of applied study on fluorophosphates glasses. Laser & Optronics Progress. 42(7), 12-16, 41(2005).
张军杰, 何冬兵, 段忠超 等. 氟磷酸盐玻璃的应用研究进展. 激光与光电子学进展. 42(7), 12-16, 41(2005).

【38】Weber M J. Oxide and halide laser glasses. NASA STI/Recon Technical Report N. 8324854, (1982).

【39】Bliss E, Hunt J, Renard P et al. Effects of nonlinear propagation on laser focusing properties. IEEE Journal of Quantum Electronics. 12(7), 402-406(1976).

【40】Stokowski S E, Martin W E and Yarema S M. Optical and lasing properties of fluorophosphate glass. Journal of Non-Crystalline Solids. 40(1/2/3), 481-487(1980).

【41】Liao M S. Spectroscopic characteristics of rare earth ions doped fluorophosphate glass. Shanghai: University of Chinese Academy of Sciences. (2007).
廖梅松. 稀土掺杂氟磷玻璃的光谱性质. 上海: 中国科学院大学. (2007).

【42】Zhang L Y. The study of spectroscopic and laser properties of Yb 3+, Er 3+ doped fluorophosphate glass . Shanghai: University of Chinese Academy of Sciences. (2005).
张丽艳. Yb 3+, Er 3+掺杂氟磷酸盐玻璃光谱和激光性质的研究 . 上海: 中国科学院大学. (2005).

【43】Jiang Z H. New optical functional glass. (2008).
姜中宏. 新型光功能玻璃. (2008).

【44】Bastien S P. Sunak H R D. Analysis of the performance expected in fluorosphosphate erbium-doped fiber amplifiers with the 800 nm pump band. IEEE Photonics Technology Letters. 3(12), 1088-1091(1991).

【45】Ishikawa E, Aoki H, Yamashita T et al. Laser emission and amplification at 1.3 μm in neodymium-doped fluorophosphate fibres. Electronics Letters. 28(16), 1497-1499(1992).

【46】Petrov V, Griebner U, Ehrt D et al. Femtosecond self mode locking of Yb∶fluoride phosphate glass laser. Optics Letters. 22(6), 408-410(1997).

【47】Ehrt D and Toepfer T. Preparation, structure, and properties of Yb 3+ FP laser glass . Proceedings of SPIE. 4102, 95-105(2000).

【48】Zhang L Y, Leng Y X, Zhang J J et al. Yb 3+-doped fluorophosphate glass with high cross section and lifetime . Journal of Materials Science & Technology. 26(10), 921-924(2010).

【49】Mix E, Heumann E, Huber G et al. Efficient CW-laser operation of Yb-doped fluoride phosphate glass at room temperature. [C]∥Advanced Solid State Lasers 1995, January 30, 1995, Memphis, TN, USA. Washington, D. C.: OSA. YL3, (1995).

【50】Hornung M, B?defeld R, Siebold M et al. Temporal pulse control of a multi-10 TW diode-pumped Yb∶glass laser. Applied Physics B. 101(1/2), 93-102(2010).

【51】Rolli R, Chiasera A, Montagna M et al. Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties. Proceedings of SPIE. 4282, 109-122(2001).

【52】Zheng R L, Wang J L, Zhang LL et al. Preparation and properties of Nd 3+∶SrAlF5 nanocrystals embedded fluorophosphate transparent glass-ceramic with long fluorescence lifetime . Applied Physics A. 122(7), (2016).

【53】Galleani G, Santagneli S H, Messaddeq Y et al. Rare-earth doped fluoride phosphate glasses: structural foundations of their luminescence properties. Physical Chemistry Chemical Physics. 19(32), 21612-21624(2017).

【54】Zhang L Y, Xue T F, He D B et al. Influence of Stark splitting levels on the lasing performance of Yb 3+ in phosphate and fluorophosphate glasses . Optics Express. 23(2), 1505-1511(2015).

【55】Hu C, Margaryan A, Margaryan A, Associated Equipment et al. 2019-04-30]. https:∥www.sciencedirect.com/science/article/pii/S0168900218317777. (2018).

【56】Yao Y X, Liu L W, Zhang Y et al. Optical properties of Ce 3+ doped fluorophosphates scintillation glasses . Optical Materials. 51, 94-97(2016).

【57】Yi L X, Wang M, Feng S Y et al. Emissions properties of Ho 3+: 5I7→ 5I8 transition sensitized by Er 3+ and Yb 3+ in fluorophosphate glasses . Optical Materials. 31(11), 1586-1590(2009).

【58】Tian Y, Xu R R, Zhang L Y et al. Observation of 2.7 μm emission from diode-pumped Er 3+/Pr 3+-codoped fluorophosphate glass . Optics Letters. 36(2), 109-111(2011).

【59】Tian Y, Xu R R, Hu L L et al. Mid-infrared luminescence and energy transfer of Tm 3+/Yb 3+ doped fluorophosphate glass . Materials Chemistry and Physics. 133(1), 340-345(2012).

【60】Tian Y, Zhang J J, Jing X F et al. Synthesis and spectroscopic characterization of Ho 3+/Tm 3+/Pr 3+ doped fluorophosphate glass . Journal of Materials Science: Materials in Electronics. 24(3), 866-870(2013).

【61】Li R B, Tian C, Tian Y et al. Mid-infrared emission properties and energy transfer evaluation in Tm 3+ doped fluorophosphate glasses . Journal of Luminescence. 162, 58-62(2015).

【62】Tian Y, Xu R R, Hu L L et al. Synthesis and infrared photoluminescence around 2.9 μm from Dy 3+/Tm 3+ codoped fluorophosphate glass . Materials Letters. 69, 72-75(2012).

【63】Chen H F, Chen F Z, Wei T et al. Ho 3+ doped fluorophosphate glasses sensitized by Yb 3+ for efficient 2 μm laser applications . Optics Communications. 321, 183-188(2014).

【64】Wang M. Investigation on 2 μm rare earth ions doped fluorophosphate glass and fiber. Shanghai: University of Chinese Academy of Sciences. (2009).
王孟. 2 μm输出掺稀土氟磷酸盐玻璃光纤的研究. 上海: 中国科学院大学. (2009).

引用该论文

Ying Tian, Shiqing Xu, Feifei Huang, Junjie Zhang. Research Progress of Rare Earth Doped Fluorophosphate Glass Fiber for 2-3 μm Fiber Laser Application[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170608

田颖, 徐时清, 黄飞飞, 张军杰. 面向2~3 μm光纤激光应用的稀土掺杂氟磷酸盐玻璃光纤的研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170608

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF