首页 > 论文 > 中国激光 > 47卷 > 9期(pp:907002--1)

基于自适应扩展卡尔曼滤波的吲哚菁绿药代动力学实验研究

Experimental Study of Indocyanine Green Pharmacokinetics Based on Adaptive Extended Kalman Filter

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于动态扩散荧光层析成像(DFT)的荧光剂药代动力学参数(渗透率等),可为判断不同生物组织体的生理过程和病理信息提供参考。自适应扩展卡尔曼滤波(AEKF)作为一种动态分析方法,具有精确的建模和多参数在线估计等优势。基于DFT系统对吲哚菁绿(ICG)在健康小鼠肝脏和荷瘤小鼠皮下移植瘤组织中的代谢过程进行了测量,然后采用DFT重建技术获得了ICG的时间序列荧光层析图像,在此基础上结合二室模型和AEKF方法得到了ICG的时间序列渗透率参数层析图像。对比两种实验结果可知,肿瘤中ICG的渗透率参数Kpe、Kep均较健康小鼠肝脏中的小。时间序列荧光层析图像显示,AEKF方法能有效获得复杂生物体实时、稳定的ICG药代动力学参数。

Abstract

The fluorescence pharmacokinetic parameters (permeability, etc.) based on dynamic diffuse fluorescence tomography (DFT) can provide reference for studying the dynamic physiological process and pathological information of different biological tissues. The adaptive extended Kalman filter (AEKF) (a method for dynamic analysis) has many advantages, such as precise modeling and multi-parameter online estimation. In this work, the metabolic process of indocyanine green (ICG) in healthy mice liver and tumor-burdened mice subcutaneous transplanted tumor tissue was measured using the dynamic DFT system. Then, we obtained the time-series fluorescence yield images of ICG by DFT method. On this basis, the time-series permeability images of ICG were reconstructed by the AEKF method based on a two-compartment model. The two experimental results verify that the permeability parameters Kpe and Kep of ICG in the tumor are less than that in the liver. Furthermore, the time-series permeability images of ICG also demonstrate that the AEKF method can effectively obtain the real-time and stable ICG pharmacokinetic parameters of complex organisms.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.0907002

所属栏目:生物医学光子学与激光医学

基金项目:国家自然科学基金、天津市自然科学基金;

收稿日期:2020-03-16

修改稿日期:2020-05-13

网络出版日期:2020-09-01

作者单位    点击查看

张雁琦:天津大学精密仪器与光电子工程学院, 天津 300072
张丽敏:天津大学精密仪器与光电子工程学院, 天津 300072天津市生物医学检测技术与仪器重点实验室, 天津 300072
赵志超:天津大学精密仪器与光电子工程学院, 天津 300072
马文娟:天津医科大学肿瘤医院, 天津 300060
高峰:天津大学精密仪器与光电子工程学院, 天津 300072天津市生物医学检测技术与仪器重点实验室, 天津 300072

联系人作者:张丽敏(zhanglm@tju.edu.cn)

备注:国家自然科学基金、天津市自然科学基金;

【1】Desmettre T, Devoisselle J M, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography [J]. Survey of Ophthalmology. 2000, 45(1): 15-27.

【2】Bauer L A. Applied clinical pharmacokinetics [M]. New York: McGraw-Hill. 2008.

【3】Alacam B, Yazici B. Direct reconstruction of pharmacokinetic-rate images of optical fluorophores from NIR measurements [J]. IEEE Transactions on Medical Imaging. 2009, 28(9): 1337-1353.

【4】Zhang G L, Liu F, Zhang B, et al. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/X-ray computed tomography system [J]. Journal of Biomedical Optics. 2013, 18(4): 040505.

【5】Boutayeb M, Aubry D. A strong tracking extended Kalman observer for nonlinear discrete-time systems [J]. IEEE Transactions on Automatic Control. 1999, 44(8): 1550-1556.

【6】Junghans P, Wagner B, Nickel A, et al. Tracer kinetics and metabolic models in medicine [J]. Isotopes in Environmental and Health Studies. 2012, 48(2): 226-238.

【7】Ozbek L, Efe M. An adaptive extended Kalman filter with application to compartment models [J]. Communications in Statistics-Simulation and Computation. 2004, 33(1): 145-158.

【8】Kim K H, Lee J G, Park C G, et al. The stability analysis of the adaptive fading extended Kalman filter[C]∥IEEE International Conference on Control Applications. 1-3 Oct. 2007, Singapore, Singapore. New York: , 2007, 982-987.

【9】Wang X, Wu L H, Yi X, et al. Performance enhancement of pharmacokinetic diffuse fluorescence tomography by use of adaptive extended Kalman filtering [J]. Computational and Mathematical Methods in Medicine. 2015, 2015: 739459.

【10】Gao F, Zhao H J, Tanikawa Y, et al. A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography [J]. Optics Express. 2006, 14(16): 7109-7124.

【11】Zhang L M, Zhao Y, Jiang S D, et al. Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction [J]. Biomedical Optics Express. 2015, 6(9): 3618-3630.

【12】Biesen P R, Jongsma F H, Tangelder G J, et al. Yield of fluorescence from indocyanine green in plasma and flowing blood [J]. Annals of Biomedical Engineering. 1995, 23(4): 475-481.

【13】Stoeckel K. McNamara P J, McLean A J, et al. Nonlinear pharmacokinetics of indocyanine green in the rabbit and rat [J]. Journal of Pharmacokinetics and Biopharmaceutics. 1980, 8(5): 483-496.

【14】Zhang Y Q, Zhang L M, Yin G Y, et al. Assessing indocyanine green pharmacokinetics in mouse liver with a dynamic diffuse fluorescence tomography system [J]. Journal of Biophotonics. 2018, 11(10): e201800041.

【15】Zhang Y Q, Wang X, Yin G Y, et al. Dynamic experimental system for indocyanine green pharmacokinetic imaging [J]. Chinese Journal of Lasers. 2017, 44(1): 0107001.
张雁琦, 王欣, 尹国艳, 等. 面向吲哚菁绿药代动力学成像的动态实验系统 [J]. 中国激光. 2017, 44(1): 0107001.

【16】Shinohara H, Tanaka A, Kitai T, et al. Direct measurement of hepatic indocyanine green clearance with near-infrared spectroscopy: separate evaluation of uptake and removal [J]. Hepatology. 1996, 23(1): 137-144.

【17】Song W T, Tang Z H, Zhang D W, et al. Comprehensive studies of pharmacokinetics and biodistribution of indocyanine green and liposomal indocyanine green by multispectral optoacoustic tomography [J]. RSC Advances. 2015, 5(5): 3807-3813.

引用该论文

Zhang Yanqi,Zhang Limin,Zhao Zhichao,Ma Wenjuan,Gao Feng. Experimental Study of Indocyanine Green Pharmacokinetics Based on Adaptive Extended Kalman Filter[J]. Chinese Journal of Lasers, 2020, 47(9): 0907002

张雁琦,张丽敏,赵志超,马文娟,高峰. 基于自适应扩展卡尔曼滤波的吲哚菁绿药代动力学实验研究[J]. 中国激光, 2020, 47(9): 0907002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF