首页 > 论文 > 光学学报 > 41卷 > 1期(pp:0108001--1)

自由曲面成像光学系统设计:理论、发展与应用

Freeform Imaging Optical System Design: Theories, Development, and Applications

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

传统球面以及非球面可供光学系统设计使用的自由度较少。自由曲面打破了旋转对称以及平移对称的几何约束,特别适用于校正非旋转对称系统的像差,同时可以减少系统中元件的数量,减小系统的体积与质量,实现传统光学系统难以实现的系统参数、结构与功能。自由曲面为光学设计的发展注入了巨大潜力,但同时也带来了全新的困难与挑战。概括性地总结了自由曲面成像系统设计的研究现状。简要介绍了自由曲面的常用数学描述与自由曲面成像系统的像差理论,总结了自由曲面成像系统的设计方法,并对自由曲面在各类成像系统中的应用进行概述。最后,对自由曲面成像光学设计的未来发展方向进行了讨论与展望。

Abstract

Traditional spherical and aspherical surfaces offer limited degrees of freedom for optical system design. Freeform surface breaks the geometric constraints of rotational or translational symmetry. It can correct the aberrations in non-rotationally symmetric systems while decreasing the system size, mass, and number of elements in optical design. The system specifications, configurations, and functions which are difficult to be realized by traditional spherical or aspherical systems can be achieved by using freeform surfaces. The use of freeform surfaces not only offers great potential in the development of the optical design field, but also introduces new difficulties and challenges. This review briefly summarizes the current status of research on the freeform imaging system design. The commonly used types of freeform surface mathematical expression and the aberration theory of freeform imaging systems are demonstrated. The design methods of freeform imaging systems and the applications of freeform surface in various imaging systems are summarized. Finally, the future research directions of the freeform imaging system design are discussed and analyzed.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O435

DOI:10.3788/AOS202141.0108001

所属栏目:几何光学

基金项目:国家重点研发计划、国家自然科学基金、中国科协青年人才托举工程项目;

收稿日期:2020-05-09

修改稿日期:2020-06-11

网络出版日期:2021-01-01

作者单位    点击查看

杨通:北京理工大学光电学院, 北京 100081北京市混合现实与新型显示工程技术研究中心, 北京 100081
段璎哲:北京理工大学光电学院, 北京 100081北京市混合现实与新型显示工程技术研究中心, 北京 100081
程德文:北京理工大学光电学院, 北京 100081北京市混合现实与新型显示工程技术研究中心, 北京 100081
王涌天:北京理工大学光电学院, 北京 100081北京市混合现实与新型显示工程技术研究中心, 北京 100081

联系人作者:王涌天(wyt@bit.edu.cn)

备注:国家重点研发计划、国家自然科学基金、中国科协青年人才托举工程项目;

【1】Thompson K P, Rolland J P. Freeform optical surfaces: a revolution in imaging optical design [J]. Optics & Photonics News. 2012, 23(6): 30-35.

【2】Wills S. Freeform optics: notes from the revolution [J]. Optics & Photonics News. 2017, 28(7): 34-41.

【3】Reimers J, Bauer A, Thompson K P, et al. Freeform spectrometer enabling increased compactness [J]. Light: Science & Applications. 2017, 6(7): e17026.

【4】Wu R M, Feng Z X, Zheng Z R, et al. Design of freeform illumination optics [J]. Laser & Photonics Reviews. 2018, 12(7): 1700310.

【5】Wu R M, Xu L, Liu P, et al. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation [J]. Optics Letters. 2013, 38(2): 229-231.

【6】Liu Z J, Liu P, Yu F H. Parametric optimization method for the design of high-efficiency free-form illumination system with a LED source [J]. Chinese Optics Letters. 2012, 10(11): 112201.

【7】Wang K, Chen F, Liu Z Y, et al. Design of compact freeform lens for application specific light-emitting diode packaging [J]. Optics Express. 2010, 18(2): 413-425.

【8】Feng Z X, Cheng D W, Wang Y T. Transferring freeform lens design into phase retrieval through intermediate irradiance transport [J]. Optics Letters. 2019, 44(22): 5501-5504.

【9】Wu R, Yang L, Ding Z, et al. Precise light control in highly tilted geometry by freeform illumination optics [J]. Optics Letters. 2019, 44(11): 2887-2890.

【10】Fang F Z, Zhang X D, Weckenmann A, et al. Manufacturing and measurement of freeform optics [J]. CIRP Annals. 2013, 62(2): 823-846.

【11】Lee R W B, To S S, Cheung B C F. Design, machining and measurement technologies of ultra-precision freeform optics[M]. Beijing: China Machine Press, 2015.
李荣彬, 杜雪, 张志辉. 超精密自由曲面光学设计加工及测量技术[M]. 北京: 机械工业出版社, 2015.

【12】Wang Y T. Ray-tracing formulae for optical surfaces of unusual shape [J]. Optical Technique. 1990, 16(5): 2-8.
王涌天. 复杂面型的实际光路追迹 [J]. 光学技术. 1990, 16(5): 2-8.

【13】Cheng D W. Study on design methods of freeform imaging systems and their application in head-mounted displays [D]. Beijing: Beijing Institute of Technology. 2011.
程德文. 自由曲面光学系统设计方法及其在头盔显示技术中的应用研究 [D]. 北京: 北京理工大学. 2011.

【14】Zernike F. Inflection theory of the cutting method and its improved form, the phase contrast method [J]. Physica. 1934, 1(7): 689-704.

【15】Forbes G W. Characterizing the shape of freeform optics [J]. Optics Express. 2012, 20(3): 2483-2499.

【16】Forbes G W. Shape specification for axially symmetric optical surfaces [J]. Optics Express. 2007, 15(8): 5218-5226.

【17】Broemel A, Lippmann U, Gross H. Freeform surface descriptions. Part I: mathematical representations [J]. Advanced Optical Technologies. 2017, 6(5): 327-336.

【18】Ye J F, Chen L, Li X H, et al. Review of optical freeform surface representation technique and its application [J]. Optical Engineering. 2017, 56(11): 110901.

【19】Cakmakci O, Moore B, Foroosh H, et al. Optimal local shape description for rotationally non-symmetric optical surface design and analysis [J]. Optics Express. 2008, 16(3): 1583-1589.

【20】Piegl L, Tiller W. The NURBS book [M]. 2nd ed. Berlin: Springer. 1997.

【21】Hopkins H H. Wave theory of aberrations[M]. Oxford: , 1950.

【22】Buchroeder R A. Tilted-component telescopes. Part I: theory [J]. Applied Optics. 1970, 9(9): 2169-2171.

【23】Thompson K P, Schmid T, Cakmakci O, et al. Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry [J]. Journal of The Optical Society of America A-optics Image Science and Vision. 2009, 26(6): 1503-1517.

【24】Thompson K. Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry [J]. Journal of the Optical Society of America A. 2005, 22(7): 1389-1401.

【25】Thompson K P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: spherical aberration [J]. Journal of the Optical Society of America A. 2009, 26(5): 1090-1100.

【26】Thompson K P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the comatic aberrations [J]. Journal of the Optical Society of America A. 2010, 27(6): 1490-1504.

【27】Thompson K P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the astigmatic aberrations [J]. Journal of the Optical Society of America A. 2011, 28(5): 821-836.

【28】Schmid T, Rolland J P, Rakich A, et al. Separation of the effects of astigmatic figure error from misalignments using Nodal Aberration Theory (NAT) [J]. Optics Express. 2010, 18(16): 17433-17447.

【29】Fuerschbach K, Rolland J P, Thompson K P. Extending Nodal Aberration Theory to include mount-induced aberrations with application to freeform surfaces [J]. Optics Express. 2012, 20(18): 20139-20155.

【30】Fuerschbach K, Rolland J P, Thompson K P. Theory of aberration fields for general optical systems with freeform surfaces [J]. Optics Express. 2014, 22(22): 26585-26606.

【31】Yang T, Zhu J, Jin G F. Nodal aberration properties of coaxial imaging systems using Zernike polynomial surfaces [J]. Journal of the Optical Society of America A. 2015, 32(5): 822-836.

【32】Yang T, Cheng D W, Wang Y T. Aberration analysis for freeform surface terms overlay on general decentered and tilted optical surfaces [J]. Optics Express. 2018, 26(6): 7751-7770.

【33】Ju G H, Yan C X, Gu Z Y, et al. Computation of astigmatic and trefoil figure errors and misalignments for two-mirror telescopes using nodal-aberration theory [J]. Applied Optics. 2016, 55(13): 3373-3386.

【34】Zhu J, Wu X F, Yang T, et al. Generating optical freeform surfaces considering both coordinates and normals of discrete data points [J]. Journal of the Optical Society of America A. 2014, 31(11): 2401-2408.

【35】Andrew Hicks R. Controlling a ray bundle with a free-form reflector [J]. Optics Letters. 2008, 33(15): 1672-1674.

【36】Hou J, Li H F, Zheng Z R, et al. Distortion correction for imaging on non-planar surface using freeform lens [J]. Optics Communications. 2012, 285(6): 986-991.

【37】Wassermann G D, Wolf E. On the theory of aplanatic aspheric systems [J]. Proceedings of the Physical Society Section B. 1949, 62(1): 2-8.

【38】Mahajan V N. Optical imaging and aberrations[M]. Bellingham: , 1998.

【39】Vaskas E M. Note on the Wasserman-Wolf method for designing aspheric surfaces [J]. Journal of the Optical Society of America. 1957, 47(7): 669-670.

【40】Knapp D J. Conformal optical design [D]. Tucson: The University of Arizona. 2002.

【41】Cheng D W, Wang Y T, Hua H. Free form optical system design with differential equations [J]. Proceedings of SPIE. 2010, 7849: 78490Q.

【42】Volatier J, Druart G. Differential method for freeform optics applied to two-mirror off-axis telescope design [J]. Optics Letters. 2019, 44(5): 1174-1177.

【43】Volatier J B, Duveau L, Druart G. An exploration of the freeform two-mirror off-axis solution space [J]. Journal of Physics: Photonics. 2019, 2(1): 014004.

【44】Andrew Hicks R, Croke C. Designing coupled free-form surfaces [J]. Journal of the Optical Society of America A. 2010, 27(10): 2132-2137.

【45】Minano J C, Gonzalez J C. New method of design of nonimaging concentrators [J]. Applied Optics. 1992, 31(16): 3051-3060.

【46】Minano J C, Benitez P, Gonzalez J C. RX: a nonimaging concentrator [J]. Applied Optics. 1995, 34(13): 2226-2235.

【47】Winston R, Mi?ano J C, Benitez P G. Nonimaging optics [M]. Amsterdam: Elsevier. 2005.

【48】Mi?ano J C, Benítez P, Lin W, et al. An application of the SMS method for imaging designs [J]. Optics Express. 2009, 17(26): 24036-24044.

【49】Lin W, Benítez P, Mi?ano J C, et al. Advances in the SMS design method for imaging optics [J]. Proceedings of SPIE. 2011, 8167: 81670M.

【50】Duerr F, Benitez P, Minano J C, et al. Analytic design method for optimal imaging: coupling three ray sets using two free-form lens profiles [J]. Optics Express. 2012, 20(5): 5576-5585.

【51】Duerr F, Benitez P, Minano J C, et al. Analytic free-form lens design in 3D: coupling three ray sets using two lens surfaces [J]. Optics Express. 2012, 20(10): 10839-10846.

【52】Duerr F, Meuret Y, Thienpont H. Potential benefits of free-form optics in on-axis imaging applications with high aspect ratio [J]. Optics Express. 2013, 21(25): 31072-31081.

【53】Nie Y F, Thienpont H, Duerr F. Multi-fields direct design approach in 3D: calculating a two-surface freeform lens with an entrance pupil for line imaging systems [J]. Optics Express. 2015, 23(26): 34042-34054.

【54】Nie Y F, Mohedano R, Benitez P, et al. Multifield direct design method for ultrashort throw ratio projection optics with two tailored mirrors [J]. Applied Optics. 2016, 55(14): 3794-3800.

【55】Yang T, Zhu J, Hou W, et al. Design method of freeform off-axis reflective imaging systems with a direct construction process [J]. Optics Express. 2014, 22(8): 9193-9205.

【56】Yang T, Zhu J, Wu X F, et al. Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method [J]. Optics Express. 2015, 23(8): 10233-10246.

【57】Yang T, Zhu J, Jin G F. Starting configuration design method of freeform imaging and afocal systems with a real exit pupil [J]. Applied Optics. 2016, 55(2): 345-353.

【58】Hou W, Zhu J, Yang T, et al. Construction method through forward and reverse ray tracing for a design of ultra-wide linear field-of-view off-axis freeform imaging systems [J]. Journal of Optics. 2015, 17(5): 055603.

【59】Yang T, Jin G F, Zhu J. Design of image-side telecentric freeform imaging systems based on a point-by-point construction-iteration process [J]. Chinese Optics Letters. 2017, 15(6): 062202.

【60】Yang T, Zhu J, Jin A G. Design of a freeform, dual fields-of-view, dual focal lengths, off-axis three-mirror imaging system with a point-by-point construction-iteration process [J]. Chinese Optics Letters. 2016, 14(10): 100801.

【61】Wu X F, Jin G F, Zhu J. Freeform illumination design model for multiple light sources simultaneously [J]. Applied Optics. 2017, 56(9): 2405-2411.Wu X F, Jin G F, Zhu J. Freeform illumination design model for multiple light sources simultaneously [J]. Applied Optics. 2017, 56(9): 2405-2411.

【62】Wu X F, Zhu J, Yang T, et al. Transverse image translation using an optical freeform single lens [J]. Applied Optics. 2015, 54(28): E55-E62.

【63】Yang T, Cheng D W, Wang Y T. Freeform imaging spectrometer design using a point-by-point design method [J]. Applied Optics. 2018, 57(16): 4718-4727.

【64】Duan Y Z, Yang T, Cheng D W, et al. Design method for nonsymmetric imaging optics consisting of freeform-surface-substrate phase elements [J]. Optics Express. 2020, 28(2): 1603-1620.

【65】Zhong Y, Gross H. Initial system design method for non-rotationally symmetric systems based on Gaussian brackets and nodal aberration theory [J]. Optics Express. 2017, 25(9): 10016-10030.

【66】Cao C, Liao S, Liao Z, et al. Initial configuration design method for off-axis reflective optical systems using nodal aberration theory and genetic algorithm [J]. Optical Engineering. 2019, 58(10): 105101.

【67】Papa J C, Howard J M, Rolland J P. Three-mirror freeform imagers [J]. Proceedings of SPIE. 2018, 1069: 106901D.

【68】Papa J C, Howard J M, Rolland J P. Starting point designs for freeform four-mirror systems [J]. Optical Engineering. 2018, 57(10): 101705.

【69】Sasian J M. How to approach the design of a bilateral symmetric optical system [J]. Optical Engineering. 1994, 33(6): 2045-2062.

【70】Chang S. Linear astigmatism of confocal off-axis reflective imaging systems with N-conic mirrors and its elimination [J]. Journal of the Optical Society of America A. 2015, 32(5): 852-859.

【71】Papa J C, Howard J M, Rolland J P. Automatic solution space exploration for freeform optical design . [C]∥Optical Design and Fabrication 2019 (Freeform, OFT), June 10-12, 2019, Washington, D.C.: OSA. 2019, FM4B: 1.

【72】Bauer A, Schiesser E M, Rolland J P. Starting geometry creation and design method for freeform optics [J]. Nature Communications. 2018, 9(1): 1756.

【73】Wetherell W B. -12-23 [P]. Womble D A. All-reflective three element objective: US4240707. 1980.

【74】Horisaki R, Takagi R, Tanida J. Deep-learning-generated holography [J]. Applied Optics. 2018, 57(14): 3859-3863.

【75】Rivenson Y, Zhang Y B, Günayd?n H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks [J]. Light: Science & Applications. 2018, 7(2): 17141.

【76】Jin K H. McCann M T, Froustey E, et al. Deep convolutional neural network for inverse problems in imaging [J]. IEEE Transactions on Image Processing. 2017, 26(9): 4509-4522.

【77】Cao Z Y, Guo N, Li M H, et al. Back propagation neutral network based signal acquisition for Brillouin distributed optical fiber sensors [J]. Optics Express. 2019, 27(4): 4549-4561.

【78】Zuo C, Feng S J, Zhang X, et al. Deep learning based computational imaging: status, challenges, and future [J]. Acta Optica Sinica. 2020, 40(1): 0111003.
左超, 冯世杰, 张翔宇, 等. 深度学习下的计算成像: 现状, 挑战与未来 [J]. 光学学报. 2020, 40(1): 0111003.

【79】Yang T, Cheng D W, Wang Y T. Direct generation of starting points for freeform off-axis three-mirror imaging system design using neural network based deep-learning [J]. Optics Express. 2019, 27(12): 17228-17238.

【80】Cheng D W, Wang Y T, Hua H, et al. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism [J]. Applied Optics. 2009, 48(14): 2655-2668.

【81】Yang T, Zhu J, Jin A G. Compact freeform off-axis three-mirror imaging system based on the integration of primary and tertiary mirrors on one single surface [J]. Chinese Optics Letters. 2016, 14(6): 060801.

【82】Fischer R E, Tadic-Galeb B, Yoder P R. Optical system design [M]. New York: SPIE. 2008.

【83】Liu C, Gross H. Numerical optimization strategy for multi-lens imaging systems containing freeform surfaces [J]. Applied Optics. 2018, 57(20): 5758-5768.

【84】Fuerschbach K, Rolland J P, Thompson K P. A new family of optical systems employing φ-polynomial surfaces [J]. Optics Express. 2011, 19(22): 21919-21928.

【85】Bauer A, Rolland J P. Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics [J]. Optics Express. 2015, 23(22): 28141-28153.

【86】Bauer A, Pesch M, Muschaweck J, et al. All-reflective electronic viewfinder enabled by freeform optics [J]. Optics Express. 2019, 27(21): 30597-30605.

【87】Cheng D W, Wang Y T, Hua H. Automatic image performance balancing in lens optimization [J]. Optics Express. 2010, 18(11): 11574-11588.

【88】Houllier T, Lepine T. Comparing optimization algorithms for conventional and freeform optical design [J]. Optics Express. 2019, 27(13): 18940-18957.

【89】Chrisp M. Method of. -10-08 [P]. system for optimizing NURBS surfaces for an imaging system: US-10437943. 2019.

【90】Chrisp M P, Primeau B, Echter M A. Imaging freeform optical systems designed with NURBS surfaces [J]. Optical Engineering. 2016, 55(7): 071208.

【91】Yang T, Jin G F, Zhu J. Automated design of freeform imaging systems [J]. Light: Science & Applications. 2017, 6(10): e17081.

【92】Xu C, Cheng D W, Wang Y T. Automatic obscuration elimination for off-axis mirror systems [J]. Applied Optics. 2017, 56(32): 9014-9022.

【93】Cai D Y, Gross H. Obscuration elimination in three-dimensional nonsymmetrical optical systems [J]. Journal of Physics: Photonics. 2019, 1(4): 044002.

【94】Xu C, Lai X M, Cheng D W, et al. Automatic optical path configuration variation in off-axis mirror system design [J]. Optics Express. 2019, 27(11): 15251-15261.

【95】Trumper I, Aftab M, Kim D W. Freeform surface selection based on parametric fitness function using modal wavefront fitting [J]. Optics Express. 2019, 27(5): 6815-6831.

【96】-03-24 [P]. Kanolt C W. Multifocal ophthalmic lenses: US2878721. 1959.

【97】-02-21 [P]. Alvarez L W. Two-element variable-power spherical lens: US3305294. 1967.

【98】Plummer W T. Free-form optical components in some early commercial products [J]. Proceedings of SPIE. 2005, 5865: 586509.

【99】Plummer W T. Unusual optics of the Polaroid SX-70 Land camera [J]. Applied Optics. 1982, 21(2): 196-202.

【100】Rogers J R. Aberrations of unobscured reflective optical systems [D]. Tucson: The University of Arizona. 1983.

【101】Bottema M. Reflective correctors for the Hubble Space Telescope axial instruments [J]. Applied Optics. 1993, 32(10): 1768-1774.

【102】Zhu J, Hou W, Zhang X D, et al. Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view [J]. Journal of Optics. 2015, 17(1): 015605.

【103】Beier M, Hartung J, Peschel T, et al. Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope [J]. Applied Optics. 2015, 54(12): 3530-3542.

【104】Fuerschbach K, Thompson K P, Rolland J P. Interferometric measurement of a concave, φ-polynomial, Zernike mirror [J]. Optics Letters. 2014, 39(1): 18-21.

【105】Fuerschbach K, Davis G E, Thompson K P, et al. Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors [J]. Optics Letters. 2014, 39(10): 2896-2899.

【106】Muslimov E, Hugot E, Jahn W, et al. Combining freeform optics and curved detectors for wide field imaging: a polynomial approach over squared aperture [J]. Optics Express. 2017, 25(13): 14598-14610.

【107】Zhang X J, Xue D L, Li M, et al. Designing, fabricating, and testing freeform surfaces for space optics [J]. Proceedings of SPIE. 2013, 8838: 88380N.

【108】Meng Q Y, Wang H Y, Wang K J, et al. Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror [J]. Applied Optics. 2016, 55(32): 8962-8970.

【109】Meng Q Y, Wang H Y, Liang W J, et al. Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view [J]. Applied Optics. 2019, 58(3): 609-615.

【110】Wu W C, Jin G F, Zhu J. Optical design of the freeform reflective imaging system with wide rectangular FOV and low F-number [J]. Results in Physics. 2019, 15: 102688.

【111】Jahn W, Ferrari M, Hugot E. Innovative focal plane design for large space telescope using freeform mirrors [J]. Optica. 2017, 4(10): 1188-1195.

【112】Chen L, Gao Z S, Ye J F, et al. Construction method through multiple off-axis parabolic surfaces expansion and mixing to design an easy-aligned freeform spectrometer [J]. Optics Express. 2019, 27(18): 25994-26013.

【113】Howard J, West G, Trumper I, et al. -09-07)[2020-05-09] . https:∥www.zhangqiaokeyan.com/ntis-science-report_other_thesis/020717857.html. 2015.

【114】Feng L, Zhou J S, Wei L D, et al. Design of a compact wide-spectrum double-channel prism imaging spectrometer with freeform surface [J]. Applied Optics. 2018, 57(31): 9512-9522.

【115】Zhang J L, Lin C, Ji Z H, et al. Design of a compact hyperspectral imaging spectrometer with a freeform surface based on anastigmatism [J]. Applied Optics. 2020, 59(6): 1715-1725.

【116】Xu C, Cheng D W, Chen J J, et al. Design of all-reflective dual-channel foveated imaging systems based on freeform optics [J]. Applied Optics. 2016, 55(9): 2353-2362.

【117】Zhu J, Zhang B Q, Hou W, et al. Design of an oblique camera based on a field-dependent parameter [J]. Applied Optics. 2019, 58(21): 5650-5655.

【118】Liu X Y, Gong T T, Jin G F, et al. Design method for assembly-insensitive freeform reflective optical systems [J]. Optics Express. 2018, 26(21): 27798-27811.

【119】Deng Y T, Jin G F, Zhu J. Design method for freeform reflective-imaging systems with low surface-figure-error sensitivity [J]. Chinese Optics Letters. 2019, 17(9): 092201.

【120】Hua H, Hu X D, Gao C Y. A high-resolution optical see-through head-mounted display with eyetracking capability [J]. Optics Express. 2013, 21(25): 30993-30998.

【121】Cheng D W, Wang Y T, Hua H, et al. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling [J]. Optics Letters. 2011, 36(11): 2098-2100.

【122】Cheng D W, Wang Q F, Wang Y T, et al. Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms [J]. Chinese Optics Letters. 2013, 11(3): 031201.

【123】Hu X D, Hua H. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics [J]. Optics Express. 2014, 22(11): 13896-13903.

【124】Song W T, Wang Y T, Cheng D W, et al. Light field head-mounted display with correct focus cue using micro structure array [J]. Chinese Optics Letters. 2014, 12(6): 060010.

【125】Huang H K, Hua H. High-performance integral-imaging-based light field augmented reality display using freeform optics [J]. Optics Express. 2018, 26(13): 17578-17590.

【126】Zheng Z R, Liu X, Li H F, et al. Design and fabrication of an off-axis see-through head-mounted display with an x-y polynomial surface [J]. Applied Optics. 2010, 49(19): 3661-3668.

【127】Li H, Zhang X, Wang C, et al. Design of an off-axis helmet-mounted display with freeform surface described by radial basis functions [J]. Optics Communications. 2013, 309: 121-126.

【128】Wilson A, Hua H. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses [J]. Optics Express. 2019, 27(11): 15627-15637.

【129】Pan J W. Che-Wen C A, Huang K D, et al. Demonstration of a broad band spectral head-mounted display with freeform mirrors [J]. Optics Express. 2014, 22(11): 12785-12798.

【130】Bauer A, Rolland J P. Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays [J]. Optics Express. 2014, 22(11): 13155-13163.

【131】Cheng D W, Wang Y T, Xu C, et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics [J]. Optics Express. 2014, 22(17): 20705-20719.

【132】Wang Q W, Cheng D W, Hou Q C, et al. Stray light and tolerance analysis of an ultrathin waveguide display [J]. Applied Optics. 2015, 54(28): 8354-8362.

【133】Han J, Liu J, Yao X C, et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms [J]. Optics Express. 2015, 23(3): 3534-3549.

【134】Yang J M, Twardowski P, Gerard P, et al. Design of a large field-of-view see-through near to eye display with two geometrical waveguides [J]. Optics Letters. 2016, 41(23): 5426-5429.

【135】Wei S L, Fan Z C, Zhu Z B, et al. Design of a head-up display based on freeform reflective systems for automotive applications [J]. Applied Optics. 2019, 58(7): 1675-1681.

【136】Qin Z, Lin S, Luo K, et al. Dual-focal-plane augmented reality head-up display using a single picture generation unit and a single freeform mirror [J]. Applied Optics. 2019, 58(20): 5366-5374.

【137】Gu L, Cheng D W, Wang Q W, et al. Design of a uniform-illumination two-dimensional waveguide head-up display with thin plate compensator [J]. Optics Express. 2019, 27(9): 12692-12709.

【138】Ma T, Yu J C, Liang P, et al. Design of a freeform varifocal panoramic optical system with specified annular center of field of view [J]. Optics Express. 2011, 19(5): 3843-3853.

【139】laser scanning unit: US7852566[P]. -12-14 . Shih B Y. Single F-theta lens used for micro-electro mechanical system, MEMS. 2010.

【140】Hirata K. -03-02 [P]. Yatsu M. Projection-type image display apparatus: US7670009. 2010.

【141】Yu B H, Tian Z H, Su D Q, et al. Design and engineering verification of an ultrashort throw ratio projection system with a freeform mirror [J]. Applied Optics. 2019, 58(13): 3575-3581.

【142】Mann H J. -12-17 [P]. Shafer D. Imaging optical system, projection exposure installation for microlithography with an imaging optical system of this type: US8610877. 2013.

【143】Liu Y, Li Y, Cao Z. Design method of off-axis extreme ultraviolet lithographic objective system with a direct tilt process [J]. Optical Engineering. 2015, 54(7): 075102.

【144】Mao S S, Li Y Q, Jiang J H, et al. Design of a hyper-numerical-aperture deep ultraviolet lithography objective with freeform surfaces [J]. Chinese Optics Letters. 2018, 16(3): 030801.

【145】Mao S S, Li Y Q, Liu K, et al. Optical design of high numerical aperture extreme ultraviolet lithography objective with freeform surfaces [J]. Infrared and Laser Engineering. 2019, 48(8): 0814002.
毛姗姗, 李艳秋, 刘克, 等. 高数值孔径自由曲面极紫外光刻物镜光学设计 [J]. 红外与激光工程. 2019, 48(8): 0814002.

【146】Brückner A. Multiaperture cameras[M]. New York: , 2013, 191-250.

【147】Dunkel J, Wippermann F, Bruckner A, et al. Laser lithographic approach to micro-optical freeform elements with extremely large sag heights [J]. Optics Express. 2012, 20(4): 4763-4775.

【148】Li L, Yi A Y. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera [J]. Applied Optics. 2012, 51(12): 1843-1852.

【149】Pang K, Fang F Z, Song L, et al. Bionic compound eye for 3D motion detection using an optical freeform surface [J]. Journal of the Optical Society of America B. 2017, 34(5): B28.

【150】Pang K. Study on design and application of optical imaging systems based on micro lens arrays [D]. Tianjin: Tianjin University. 2017.
庞阔. 基于微透镜阵列的光学成像系统设计与应用的研究 [D]. 天津: 天津大学. 2017.

【151】Li H, Naples N J, Zhao X, et al. An integrated approach to design and fabrication of a miniature endoscope using freeform optics [J]. Advanced Optical Technologies. 2016, 5(4): 335-342.

【152】Chang C W, Sun H Y, Horng C T, et al. Progressive rear-view mirror for motorcycles [J]. Optics Express. 2016, 24(25): 29283-29294.

【153】Ohde H, Nagata T. Optical design, fabrication, and evaluation of optical systems using free-shaped prism [J]. Proceedings of SPIE. 2007, 6834: 68340K.

【154】Nie Y F, Gross H, Zhong Y, et al. Freeform optical design for a nonscanning corneal imaging system with a convexly curved image [J]. Applied Optics. 2017, 56(20): 5630-5638.

【155】He S F, Meng Y, Gong M L. Freeform lens design to eliminate retroreflection for optical systems [J]. Applied Optics. 2018, 57(5): 1218-1224.

【156】Yoon C, Bauer A, Xu D, et al. Absolute linear-in-k spectrometer designs enabled by freeform optics [J]. Optics Express. 2019, 27(24): 34593-34602.

引用该论文

Yang Tong,Duan Yingzhe,Cheng Dewen,Wang Yongtian. Freeform Imaging Optical System Design: Theories, Development, and Applications[J]. Acta Optica Sinica, 2021, 41(1): 0108001

杨通,段璎哲,程德文,王涌天. 自由曲面成像光学系统设计:理论、发展与应用[J]. 光学学报, 2021, 41(1): 0108001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF