首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170603--1)

微结构光纤的研究进展及展望

Progress and Prospect of Microstructured Optical Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

微结构光纤(MOF)在结构和性能上的优越性引起了国内外光纤研究人员的广泛兴趣,成为光电子学领域的前沿热点,并得到了快速发展。MOF根据结构可分为实芯MOF和空芯MOF,根据传输机理可分为全内反射型MOF、光子带隙型MOF和反谐振MOF等多种类型,在激光技术、光传感技术、光通信技术、光电子集成和光纤器件等领域具有重要应用。本文综述了MOF的发展历程,并对MOF的种类、传输机理、结构设计和拉制进行了全面分析和归纳,为未来MOF的研究及应用提供借鉴。

Abstract

The structure and performance advantages of microstructured optical fibers (MOFs) have aroused an immense interest from researchers both locally and internationally, and the MOF emerges as a hot spot in the field of optoelectronics. Currently, according to the structure, MOF can either be solid-core or hollow-core. With respect to the transmission mechanism, they can be categorized as total internal reflection MOF, photonic bandgap MOF, and anti-resonant MOF. The important applications of MOF can be found in laser technology, optical sensing technology, optical communication technology, optoelectronic integration, and optical fiber devices. This paper conducts a review on the development history of MOF, presents a comprehensive analysis and summary of their various types, transmission mechanism, design, and fabrication, and provides a reference for exploring new research directions and applications of MOF in the future.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170603

所属栏目:功能光纤

基金项目:国家自然科学基金、国家重点研发计划、广东省重点领域支持研发计划、广东省高等学校珠江学者岗位计划、广东省基金项目;

收稿日期:2019-05-05

修改稿日期:2019-06-06

网络出版日期:2019-09-01

作者单位    点击查看

夏长明:华南师范大学广州市特种光纤光子器件与应用重点实验室, 广东 广州 510006
周桂耀:华南师范大学广州市特种光纤光子器件与应用重点实验室, 广东 广州 510006

联系人作者:周桂耀(zguiyao@163.com)

备注:国家自然科学基金、国家重点研发计划、广东省重点领域支持研发计划、广东省高等学校珠江学者岗位计划、广东省基金项目;

【1】Russell P. Photonic crystal fibers. Science. 299(5605), 358-362(2003).

【2】Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters. 58(20), 2059-2062(1987).

【3】Yablonovitch E, Gmitter T and Leung K. Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Physical Review Letters. 67(17), 2295-2298(1991).

【4】Knight J C and Birks T A. Russell P St J, et al. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters. 21(19), 1547-1549(1996).

【5】Knight J C. Photonic crystal fibres. Nature. 424(6950), 847-851(2003).

【6】Ranka J K, Windeler R S and Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters. 25(1), 25-27(2000).

【7】Kuhlmey B T, White T P, Renversez G et al. Multipole method for microstructured optical fibers. II. Implementation and results. Journal of the Optical Society of America B. 19(10), 2331-2340(2002).

【8】White T P and Kuhlmey B T. McPhedran R C, et al. Multipole method for microstructured optical fibers. I. Formulation. Journal of the Optical Society of America B. 19(10), 2322-2330(2002).

【9】Steel M J. White T P, de Sterke C M, et al. Symmetry and degeneracy in microstructured optical fibers. Optics Letters. 26(8), 488-490(2001).

【10】Limpert J, Schreiber T, Nolte S et al. High-power air-clad large-mode-area photonic crystal fiber laser. Optics Express. 11(7), 818-823(2003).

【11】Wadsworth W J, Percival R M, Bouwmans G et al. High power air-clad photonic crystal fibre laser. Optics Express. 11(1), 48-53(2003).

【12】Limpert J, Schreiber T, Liem A et al. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation. Optics Express. 11(22), 2982-2990(2003).

【13】Wu D K C, Kuhlmey B T and Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor. Optics Letters. 34(3), 322-324(2009).

【14】Dong X Y, Tam H Y and Shum P. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters. 90(15), (2007).

【15】Rindorf L, Jensen J B, Dufva M et al. Photonic crystal fiber long-period gratings for biochemical sensing. Optics Express. 14(18), 8224-8231(2006).

【16】Bjarklev A and Lin C. Applications of photonic crystal fibers in optical communications - what is in the future?. [C]∥2005 IEEE LEOS Annual Meeting Conference Proceedings, October 22-28, 2005, Sydney, NSW, Australia. New York: IEEE. 812-813(2005).

【17】Sang X Z, Chu P L and Yu C X. Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications. Optical and Quantum Electronics. 37(10), 965-994(2005).

【18】Xi X M. Wong G K L, Frosz M H, et al. Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber. Optica. 1(3), 165-169(2014).

【19】McNab S J, Moll N and Vlasov Y A. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Optics Express. 11(22), 2927-2939(2003).

【20】Palma-Vega G, Beier F, Stutzki F et al. High average power transmission through hollow-core fibers. [C]∥Laser Congress 2018 (ASSL), November 4-8, 2018, Boston, Massachusetts, United States. Washington, D.C.: OSA. ATh1A, (2018).

【21】Temelkuran B, Hart S D, Benoit G et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature. 420(6916), 650-653(2002).

【22】Konorov S O, Fedotov A B, Kolevatova O A et al. Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre. Journal of Physics D: Applied Physics. 36(12), 1375-1381(2003).

【23】Birks T A and Knight J C. Russell P St J. Endlessly single-mode photonic crystal fiber. Optics Letters. 22(13), 961-963(1997).

【24】Dudley J M and Taylor J R. Ten years of nonlinear optics in photonic crystal fibre. Nature Photonics. 3(2), 85-90(2009).

【25】Ortigosa-Blanch A, Knight J C, Wadsworth W J et al. Highly birefringent photonic crystal fibers. Optics Letters. 25(18), 1325-1327(2000).

【26】Knight J C, Birks T A, Cregan R F et al. Large mode area photonic crystal fibre. Electronics Letters. 34(13), 1347-1348(1998).

【27】Knight J C, Arriaga J, Birks T A et al. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters. 12(7), 807-809(2000).

【28】Ferrando A, Silvestre E, Miret J J et al. Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters. 25(11), 790-792(2000).

【29】Reeves W, Knight J, Russell P et al. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express. 10(14), 609-613(2002).

【30】Belardi W and Knight J C. Hollow antiresonant fibers with reduced attenuation. Optics Letters. 39(7), 1853-1856(2014).

【31】Markos C, Travers J C, Abdolvand A et al. Hybrid photonic-crystal fiber. Reviews of Modern Physics. 89(4), (2017).

【32】Wadsworth W J. Photonic crystal fibers. [C]∥Specially Optical Fibers 2011, June 12-15, 2011, Toronto, Canada. Washington, D.C.: OSA. SOMD3, (2011).

【33】Poli F, Cucinotta A and Selleri S. Photonic crystal fibers. Netherlands: Springer. (2007).

【34】Cregan R F, Mangan B J, Knight J C et al. Single-mode photonic band gap guidance of light in air. Science. 285(5433), 1537-1539(1999).

【35】Poletti F, Petrovich M N and Richardson D J. Hollow-core photonic bandgap fibers: technology and applications. Nanophotonics. 2(5/6), 315-340(2013).

【36】Markos C, Nielsen K and Bang O. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber. Journal of Optics. 17(10), (2015).

【37】Chillcce E F. Cordeiro C M B, Barbosa L C, et al. Tellurite photonic crystal fiber made by a stack-and-draw technique. Journal of Non-Crystalline Solids. 352, 3423-3428(2006).

【38】Pysz D, Kujawa I, St?pień R et al. Stack and draw fabrication of soft glass microstructured fiber optics. Bulletin of the Polish Academy of Sciences Technical Sciences. 62(4), 667-682(2014).

【39】Ma J, Yu H H, Jiang X et al. High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore. Optics Express. 25(8), 9406-9415(2017).

【40】George A K, Reeves W H et al. . Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express. 10(25), 1520-1525(2002).

【41】Webb A S. Suspended-core holey fiber for evanescent-field sensing. Optical Engineering. 46(1), (2007).

【42】Becker M, Werner M, Fitzau O et al. Laser-drilled free-form silica fiber preforms for microstructured optical fibers. Optical Fiber Technology. 19(5), 482-485(2013).

【43】Bertoncini A, Rajamanickam V P and Liberale C. On-fiber 3D printing of photonic crystal fiber tapers for mode field diameter conversion. [C]∥2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany. New York: IEEE. 17332724, (2017).

【44】Zhou G Y, Hou Z Y, Li S G et al. Fabrication of glass photonic crystal fibers with a die-cast process. Applied Optics. 45(18), 4433-4436(2006).

【45】George A K, Knight J C et al. . Tellurite photonic crystal fiber. Optics Express. 11(20), 2641-2645(2003).

【46】Zhang P Q, Zhang J, Yang P L et al. Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Optical Fiber Technology. 26, 176-179(2015).

【47】Andrew T. MIT figured out how to 3D print using glass instead of plastic USA: MIT.[2019-04-15]. https://www.engadget.com/2015/08/21/mit-figured-out-how-to-3d-print-using-glass-instead-of-plastic/. (0).

【48】Camposeo A, Persano L, Farsari M et al. Additive manufacturing: applications and directions in photonics and optoelectronics. Advanced Optical Materials. 7(1), (2019).

【49】Destino J F, Dudukovic N A, Johnson M A et al. 3D printed optical quality silica and silica-titania glasses from sol-gel feedstocks. Advanced Materials Technologies. 3(6), (2018).

【50】Cook K, Canning J, Leon-Saval S et al. Air-structured optical fiber drawn from a 3D-printed preform. Optics Letters. 40(17), 3966-3969(2015).

【51】TechRepublic. 3D printing is helping UK researchers create complex fiber optics[2019-04-15]. https:∥www.techrepublic.com/article/3d-printing-is-helping-create-complex-fiber-optics/. (0).

【52】New optical fiber 3D printing technique, . Optik & Photonik. 10(4), (2015).

【53】Zubel M G, Fasano A, Woyessa G et al. 3D-printed PMMA preform for hollow-core POF drawing. [C]∥Proceedings of the 25th International Conference on Plastic Optical Fibers 2016, September 13-15, 2016, Aston University, Birmingham, United Kingdom. Birmingham: University of Aston. (2016).

【54】Kotz F, Arnold K, Bauer W et al. Three-dimensional printing of transparent fused silica glass. Nature. 544(7650), 337-339(2017).

【55】Knight J C and Skryabin D V. Nonlinear waveguide optics and photonic crystal fibers. Optics Express. 15(23), 15365-15376(2007).

【56】Wadsworth W J, Ortigosa-Blanch A, Knight J C et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. Journal of the Optical Society of America B. 19(9), 2148-2155(2002).

【57】Hansen K and Imam H. Photonic crystal fiber. Optik & Photonik. 5(2), 37-41(2010).

【58】YOFC. HNLF[2019-04-15]. http:∥www.yofc.com/view/2135.html. (0).

【59】CJ Photonics. Highly nonlinear photonic crystal fiber. (2019).
CJ Photonics. 高非线性光子晶体光纤. (2019).

【60】Hansen K P, Kristiansen R E. Supercontinuum generation in photonic crystal fibers. (2019).

【61】YSL Photonics. Supercontinuum light source. (2019).
YSL Photonics. 超连续谱光源. (2019).

【62】University of Chinese Academy of Sciences. Significant progress has been made in the fabrication of highly nonlinear silica photonic crystal fiber. (2017).
中国科学院大学. 在高非线性石英光子晶体光纤制作方面取得重要进展. (2017).

【63】HRYH. Highly nonlinear microstructural fiber. (2019).
HRYH. 高非线性微结构光纤. (2019).

【64】Yang J J, Han Y, Wang W et al. Deep ultraviolet supercontinuum study in the highly nonlinear photonic crystal fiber. Spectroscopy and Spectral Analysis. 37(4), 1215-1219(2017).
杨建菊, 韩颖, 王伟 等. 高非线性光子晶体光纤深紫外超连续谱的研究. 光谱学与光谱分析. 37(4), 1215-1219(2017).

【65】Liu Z L and Zhang C L. Tapered Yb 3+-doped photonic crystal fiber for blue-enhanced supercontinuum generation . Optik. 161, 172-179(2018).

【66】Zervas M N and Codemard C A. High power fiber lasers: a review. IEEE Journal of Selected Topics in Quantum Electronics. 20(5), 219-241(2014).

【67】Liu S, Zhan H, Peng K et al. Multi-kW Yb-doped aluminophosphosilicate fiber. Optical Materials Express. 8(8), 2114-2124(2018).

【68】-06-15)[2019-04-15]. Laser focus world. IPG photonics successfully tests world''''s first 10 kilowatt single-mode production laser. (2009).

【69】IPG Photonics. Lasers[2019-04-15].https:∥www.ipgphotonics.com/en/products/lasers. (0).

【70】Techweb. China''''s 2 million kilowatt autonomous fiber laser installed successfully breaks the US monopoly. (2019).
Techweb. 中国2万瓦自主光纤激光器装机成功打破美国垄断. (2019).

【71】Février S, Gaponov D D, Roy P et al. High-power photonic-bandgap fiber laser. Optics Letters. 33(9), 989-991(2008).

【72】Wadsworth W J and Knight J C. Russell P S J, et al. Large mode area photonic crystal fibre laser. [C]∥Conference on Lasers and Electro-Optics, May 11, 2001, Baltimore, MD, USA. New York: IEEE. 319, (2001).

【73】Limpert J, Deguil-Robin N, Manek-H?nninger I et al. High-power rod-type photonic crystal fiber laser. Optics Express. 13(4), 1055-1058(2005).

【74】NKT Photonics. AeroGAIN-ROD high power ytterbium rod fiber gain modules [2019-04-15].https://www.nktphotonics.com/lasers-fibers/product/aerogain-rod-high-power-ytterbium-rod-fiber-gain-modules/. (0).

【75】Gaida C, Kadwani P, Leick L et al. CW-lasing and amplification in Tm 3+-doped photonic crystal fiber rod . Optics Letters. 37(21), 4513-4515(2012).

【76】Kadwani P, Modsching N, Sims R A et al. Lasing in thulium doped polarizing photonic crystal fibers (PCF). Proceedings of SPIE. 8237, (2012).

【77】Wu X, Zhang L, Liu C X et al. High-stable, double-pass forward superfluorescent fiber source based on erbium-doped photonic crystal fiber. Applied Physics B. 114(3), 433-438(2014).

【78】Wang F, Wang M, Feng S Y et al. Large-mode-area photonic crystal fiber towards pulse laser amplification based on YbAl/P/F codoped silica glass. [C]∥Advanced Solid States Laser 2018, November 4-8, 2018, Boston, Massachusetts, United States. Washington, D.C.: OSA. ATh1A, (2018).

【79】Pedrazza U, Romano V and Lüthy W. Yb 3+: Al 3+: sol-gel silica glass fiber laser . Optical Materials. 29(7), 905-907(2007).

【80】Li Z L, Wang S K, Wang X et al. Spectral properties of Tm 3+-doped silica glasses and laser behaviors of fibers by sol-gel technology . Chinese Journal of Lasers. 40(8), (2013).
李志兰, 王世凯, 王欣 等. 溶胶凝胶法制备的掺铥石英玻璃光谱性质及光纤激光性能. 中国激光. 40(8), (2013).

【81】Xie F H, Shao C Y, Wang M et al. Photodarkening-resistance improvement of Yb 3+/Al 3+ co-doped silica fibers fabricated via sol-gel method . Optics Express. 26(22), 28506-28516(2018).

【82】Liu S J, Li H Y, Tang Y X et al. Effect of Al2O3 content on physical and spectroscopic properties of Yb 3+-doped silica glass by sol-gel method . Rare Metal Materials and Engineering. 41(S3), 568-571(2012).
刘少俊, 李海元, 唐永兴 等. Al2O3对溶胶-凝胶法制备Yb 3+掺杂石英玻璃物理及光谱性质的影响 . 稀有金属材料与工程. 41(S3), 568-571(2012).

【83】Liu S J. Investigation on fabrication and spectroscopic properties of Yb 3+ doped silica glass and PCF fiber by sol-gel method . Beijing: Graduate University of the Chinese Academy of Sciences. (2012).
刘少俊. 溶胶-凝胶法制备掺镱石英玻璃和光子晶体光纤的研究. 北京: 中国科学院研究生院. (2012).

【84】Leich M, Just F, Langner A et al. Highly efficient Yb-doped silica fibers prepared by powder sinter technology. Optics Letters. 36(9), 1557-1559(2011).

【85】Zhang W, Wu J L, Zhou G Y et al. Yb-doped silica glass and photonic crystal fiber based on laser sintering technology. Laser Physics. 26(3), (2016).

【86】Xia C M, Zhou G Y, Liu J T et al. Optical properties of Yb 3+/Ho 3+ co-doped air cladding silica-based fiber fabricated with plasma non-chemical vapor deposition method . Applied Physics A. 118(2), 525-530(2015).

【87】Zhang W, Liu J T, Zhou G Y et al. Optical properties of the Yb/Er co-doped silica glass prepared by laser sintering technology. Optical Materials Express. 7(5), 1708-1715(2017).

【88】Xia C M, Zhou G Y, Liu J T et al. Fabrication and laser performance of Yb 3+/Al 3+ co-doped photonic crystal fiber synthesized by plasma nonchemical vapor deposition method . Optical Fiber Technology. 25, 20-24(2015).

【89】Chen G, Jiang Z W, Peng J G et al. Study of air-clad large-mode-area ytterbium doped photonic crystal fiber. Acta Physica Sinica. 61(14), (2012).
陈瑰, 蒋作文, 彭景刚 等. 空气包层大模场面积掺镱光子晶体光纤研究. 物理学报. 61(14), (2012).

【90】Chu Y B, Liu Y G, Liu C B et al. Extra-large-core Yb 3+ doped fiber and its laser research based on glass phase-separation technique . Chinese Journal of Lasers. 45(12), (2018).
褚应波, 刘永光, 刘长波 等. 基于玻璃分相技术的大芯径掺镱光纤及其激光研究. 中国激光. 45(12), (2018).

【91】Schuster K, Grimm S, Kalide A et al. Evolution of fluorine doping following the REPUSIL process for the adjustment of optical properties of silica materials. Optical Materials Express. 5(4), 887-897(2015).

【92】Zhu Y, Lorenz M, Eschrich T et al. Laser beam quality improvement of REPUSIL-based rod amplifier with local short adiabatic taper. Proceedings of SPIE. 10512, (2018).

【93】Schuster K, Unger S, Aichele C et al. Material and technology trends in fiber optics. Advanced Optical Technologies. 3(4), 447-468(2014).

【94】Allen L and Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A. 45(11), 8185-8189(1992).

【95】Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics. 6(7), 488-496(2012).

【96】Lei T, Zhang M, Li Y R et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light: Science & Applications. 4(3), (2015).

【97】Rodenburg B. Lavery M P J, Malik M, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Optics Letters. 37(17), 3735-3737(2012).

【98】Yu S Y. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Optics Express. 23(3), 3075-3087(2015).

【99】Hu Z A, Huang Y Q, Luo A P et al. Photonic crystal fiber for supporting 26 orbital angular momentum modes. Optics Express. 24(15), 17285-17291(2016).

【100】Nandam A and Shin W. Spiral photonic crystal fiber structure for supporting orbital angular momentum modes. Optik. 169, 361-367(2018).

【101】Zhang H, Zhang X G, Li H et al. A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission. Optics Communications. 397, 59-66(2017).

【102】Li H, Zhang H, Zhang X G et al. Design tool for circular photonic crystal fibers supporting orbital angular momentum modes. Applied Optics. 57(10), 2474-2481(2018).

【103】Kim M, Lee C G and Kim S. Photonic quasicrystal fiber supporting orbital angular momentum modes. Proceedings of SPIE. 10947, (2019).

【104】Bai X L, Chen H M and Yang H H. Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission. Optik. 158, 1266-1274(2018).

【105】Zhang L, Zhang K C, Peng J et al. Circular photonic crystal fiber supporting 110 OAM modes. Optics Communications. 429, 189-193(2018).

【106】Chen C, Zhou G Y, Zhou G et al. A multi-orbital-angular-momentum multi-ring micro-structured fiber with ultra-high-density and low-level crosstalk. Optics Communications. 368, 27-33(2016).

【107】Chen C. Research of micro-structured fiber supporting few modes and OAM states. Guangzhou: South China Normal University. (2016).
陈成. 具有传输少模和光束轨道角动量特性微结构光纤的研究. 广州: 华南师范大学. (2016).

【108】Li H, Ren G, Gao Y et al. Hollow-core photonic bandgap fibers for orbital angular momentum applications. Journal of Optics. 19(4), (2017).

【109】Zhang Y F, Chen Y J, Zhong Z Q et al. Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler. Optics Communications. 350, 160-164(2015).

【110】Zhong Z Q, Zhang Y F, Chen Y J et al. A numerical study of ring fibre for high capacity orbital angular momentum mode transmission. [C]∥2013 12th International Conference on Optical Communications and Networks (ICOCN), July 26-28, 2013, Chengdu, China. New York: IEEE. 13824788, (2013).

【111】Li S H and Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing. IEEE Photonics Journal. 5(5), (2013).

【112】Smith C M, Venkataraman N, Gallagher M T et al. Low-loss hollow-core silica/air photonic bandgap fibre. Nature. 424(6949), 657-659(2003).

【113】Mangan B, Farr L, Langford A et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber. [C]∥Optical Fiber Communication Conference 2004, February 22, 2004, Los Angeles, California, United States. Washington, D.C.: OSA. PD24, (2004).

【114】Roberts P J, Couny F, Sabert H et al. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express. 13(1), 236-244(2005).

【115】Benabid F. Russell P S J. Hollow-core photonic crystal fibers: progress and prospects. Proceeding of SPIE. 5733, 176-189(2005).

【116】Amezcua-Correa R and Gèr?me F. Leon-Saval S G, et al. Control of surface modes in low loss hollow-core photonic bandgap fibers. Optics Express. 16(2), 1142-1149(2008).

【117】Sanders G A, Strandjord L K and Qiu T Q. Hollow core fiber optic ring resonator for rotation sensing. [C]∥Optical Fiber Sensors 2006, October 23-27, 2006, Cancun, Mexico. Washington, D.C.: OSA. ME6, (2006).

【118】Terrel M A. Digonnet M J F, Fan S H. Resonant fiber optic gyroscope using an air-core fiber. Journal of Lightwave Technology. 30(7), 931-937(2012).

【119】Epple G, Kleinbach K S, Euser T G et al. Rydberg atoms in hollow-core photonic crystal fibres. Nature Communications. 5, (2014).

【120】Jung Y M, Sleiffer V, Baddela N et al. First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, March 17-21, 2013, Anaheim, CA. Washington, D.C.: OSA. PDP5A, (2013).

【121】Wang Y Y, Wheeler N V, Couny F et al. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Optics Letters. 36(5), 669-671(2011).

【122】Pryamikov A D, Biriukov A S, Kosolapov A F et al. Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. Optics Express. 19(2), 1441-1448(2011).

【123】Yu F, Wadsworth W J and Knight J C. Low loss silica hollow core fibers for 3-4 μm spectral region. Optics Express. 20(10), 11153-11158(2012).

【124】Liu Y, Zhou G Y, Xia C M et al. The fabrication and properties analysis of octagonal hollow core micro-structured fiber. Applied Laser. 34(4), 341-345(2014).
刘营, 周桂耀, 夏长明 等. 八边形空芯微结构光纤的制备和特性分析. 应用激光. 34(4), 341-345(2014).

【125】Li B Y, Sheng Z C, Wu M et al. Sensitive real-time monitoring of refractive indices and components using a microstructure optical fiber microfluidic sensor. Optics Letters. 43(20), 5070-5073(2018).

【126】Sheng Z C, Wang T, Zhou G Y et al. Raman probe based on hollow-core microstructured fiber. Acta Physica Sinica. 67(18), (2018).
盛子城, 王腾, 周桂耀 等. 基于空芯微结构光纤拉曼探针的实验研究. 物理学报. 67(18), (2018).

【127】Belardi W and Knight J C. Negative curvature fibers with reduced leakage loss. [C]∥Optical Fiber Communication Conference 2014, March 9-13, 2014, San Francisco, California, United States. Washington, D.C.: OSA. Th2A, (2014).

【128】Habib M S, Bang O and Bache M. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes. Optics Express. 23(13), 17394-17406(2015).

【129】Habib M S, Markos C, Bang O et al. Curvature and position of nested tubes in hollow-core anti-resonant fibers. [C]∥2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany. New York: IEEE. 17350440, (2017).

【130】Meng F C, Liu B W, Li Y F et al. Low loss hollow-core antiresonant fiber with nested elliptical cladding elements. IEEE Photonics Journal. 9(1), (2017).

【131】Habib M S, Bang O and Bache M. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements. Optics Express. 24(8), 8429-8436(2016).

【132】Liu X S, Fan Z W, Shi Z H et al. Dual-core antiresonant hollow core fibers. Optics Express. 24(15), 17453-17458(2016).

【133】Hayes J R, Sandoghchi S R, Bradley T D et al. Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications. Journal of Lightwave Technology. 35(3), 437-442(2017).

【134】Adamu A I, Habib M S, Petersen C R et al. Supercontinuum generation from deep-UV to mid-IR in a noble gas-filled fiber pumped with ultrashort mid-IR pulses. [C]∥Optical Sensors 2018, July 2-5, 2018, Zurich Switzerland. Washington, D.C.: OSA. JTu6E, (2018).

【135】Yu T Y, Liu X S and Fan Z W. Hollow core antiresonant fiber with radially asymmetric nodeless claddings. IEEE Photonics Journal. 10(1), (2018).

【136】Hao Y, Xiao L M and Benabid F. Optimized design of unsymmetrical gap nodeless hollow core fibers for optofluidic applications. Journal of Lightwave Technology. 36(16), 3162-3168(2018).

【137】Gao S F, Wang Y Y, Ding W et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss. Nature Communications. 9, (2018).

【138】Xia C M, Sheng Z C, Fan H X et al. Hollow core fibers for optical pumped fiber gas laser. [C]∥Conference on Lasers and Electro-Optics/Pacific Rim 2018, July 29-August 3, 2018, Hong Kong, China. Washington, D.C.: OSA. Tu2E, (2018).

【139】5G networks[N/OL]. -09-26)[2019-04-15]. Laser focus world. Low-attenuation hollow-core fiber could herald more cost effective data centers. (2018).

【140】Lee E, Luo J, Sun B et al. 45 W 2 μm nanosecond pulse delivery using antiresonant hollow-core fiber. [C]∥CLEO: Science and Innovations 2018, May 13-18, 2018, San Joe, California. Washington, D.C.: OSA. SF1K, (2018).

【141】Tu J J, Zhang B, Liu Z Y et al. Chalcogenide-glass nested anti-resonant nodeless fibers in mid-infrared region. Journal of Lightwave Technology. 36(22), 5244-5253(2018).

【142】Wei C L, Menyuk C R and Hu J. Polarization-filtering and polarization-maintaining low-loss negative curvature fibers. Optics Express. 26(8), 9528-9540(2018).

【143】Yan S B, Lou S Q, Zhang W et al. Single-polarization single-mode double-ring hollow-core anti-resonant fiber. Optics Express. 26(24), 31160-31171(2018).

【144】Wei C L, Joseph Weiblen R, Menyuk C R et al. Negative curvature fibers. Advances in Optics and Photonics. 9(3), 504-561(2017).

【145】Michieletto M, Lyngs? J K, Jakobsen C et al. Hollow-core fibers for high power pulse delivery. Optics Express. 24(7), 7103-7119(2016).

【146】Selim Habib M, Markos C, Bang O et al. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers. Optics Letters. 42(11), 2232-2235(2017).

【147】Xu M, Yu F and Knight J. Mid-infrared 1 W hollow-core fiber gas laser source. Optics Letters. 42(20), 4055-4058(2017).

【148】Aghbolagh F B A, Nampoothiri V, Debord B et al. . Mid IR hollow core fiber gas laser emitting at 4.6 μm. Optics Letters. 44(2), 383-386(2019).

【149】Guo Y Y, Yan F P, Liu S et al. Characteristics investigation of high birefringent micro-structured optical fiber filled with magnetic fluid at 2 μm band. Chinese Journal of Lasers. 45(4), (2018).
郭玉玉, 延凤平, 刘硕 等. 2 μm波段高双折射微结构磁流体光纤特性研究. 中国激光. 45(4), (2018).

【150】Qiao W, Gao S C, Lei T et al. Transmission of orbital angular momentum modes in grapefruit-type microstructure fiber. Chinese Journal of Lasers. 44(4), (2017).
乔文, 高社成, 雷霆 等. 轨道角动量模式在柚子型微结构光纤中的传输. 中国激光. 44(4), (2017).

【151】Zhang Z, Wang X H, Qiao P F et al. High sensitivity fluorescence detection system based on air suspended core microstructural fiber. Chinese Journal of Lasers. 45(5), (2018).
张炤, 王秀翃, 乔鹏飞 等. 基于空气悬浮芯微结构光纤的高灵敏度荧光检测系统. 中国激光. 45(5), (2018).

【152】Chen Y B, Wang Z F, Gu B et al. 1.5 μm fiber ethane gas Raman laser amplifier. Acta Optica Sinica. 37(5), (2017).
陈育斌, 王泽锋, 顾博 等. 1.5 μm光纤乙烷气体拉曼激光放大器. 光学学报. 37(5), (2017).

【153】Gao S F, Wang Y Y and Wang P. Research progress on hollow-core anti-resonant fiber and gas Raman laser technology. Chinese Journal of Lasers. 46(5), (2019).
高寿飞, 汪莹莹, 王璞. 反谐振空芯光纤及气体拉曼激光技术的研究. 中国激光. 46(5), (2019).

【154】Zeng W, Shu L, Li Q et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Advanced Materials. 26(31), 5310-5336(2014).

引用该论文

Changming Xia, Guiyao Zhou. Progress and Prospect of Microstructured Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170603

夏长明, 周桂耀. 微结构光纤的研究进展及展望[J]. 激光与光电子学进展, 2019, 56(17): 170603

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF