首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:230101--1)

星载激光测高仪大气延迟校正的敏感性分析

Sensitivity Analysis of Atmospheric Delay Corrections for Satellite-Borne Laser Altimeter

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

建立了基于光线跟踪算法的大气延迟校正模型和表面压力模型,利用美国国家环境预报中心提供的大气数据作为这两个模型的大气参数,将不同的大气参数代入模型进行星载激光测高仪大气延迟校正的数值模拟。模拟结果表明,天顶方向的大气延迟校正值约为2.30 m。通过模拟分析大气延迟效应对温度、大气可降水、测站点高度及高度角等敏感因子的敏感性,认为大气延迟效应对温度、大气可降水的敏感性较弱,对卫星高度角及测站点高度的敏感性较强,这一结论可为后续星载激光测距工作选择适合的环境提供参考。

Abstract

An atmospheric delay correction model based on a ray-tracing algorithm and a surface pressure model are proposed in this paper. As atmospheric parameters for the models, atmospheric data from the National Centers for Environmental Prediction (NCEP) are introduced in the models for the numerical simulations of atmospheric delay corrections of satellite-borne laser altimeters. The result shows that the atmospheric correction along the zenith direction is approximately 2.30 m. By applying sensitivity factors, such as the temperature, precipitable water, station height, and altitude angle, to analyze the sensitivity of the atmospheric delay correction, it is found that the atmospheric delay effect has a low sensitivity to the temperature and precipitable water, while has a strong sensitivity to the satellite altitude angle and station height. The results of this work can be used as a reference for determining the operable conditions for subsequent satellite-borne laser ranging research.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.230101

所属栏目:大气光学与海洋光学

基金项目:中国科学院百人计划、高分专项;

收稿日期:2019-04-23

修改稿日期:2019-05-27

网络出版日期:2019-12-01

作者单位    点击查看

江丹:西安科技大学测绘科学与技术学院, 陕西 西安 710054中国科学院遥感与数字地球研究所遥感科学国家重点实验室, 北京 100101
覃驭楚:中国科学院遥感与数字地球研究所遥感科学国家重点实验室, 北京 100101
王小平:西安大地测绘股份有限公司, 陕西 西安 710100

联系人作者:江丹(jiangdan0121@163.com); 覃驭楚(qinyc@radi.ac.cn);

备注:中国科学院百人计划、高分专项;

【1】Li S. Recent progress of spaceborne laser altimeter system [J]. Optics & Optoelectronic Technology. 2004, 2(6): 4-6.
李松. 星载激光测高仪发展现状综述 [J]. 光学与光电技术. 2004, 2(6): 4-6.

【2】Ma Y, Li S, Weng Y K, et al. Hydrostatic delay correction for satellite laser altimeter [J]. Infrared and Laser Engineering. 2013, 42(4): 909-914.
马跃, 李松, 翁寅侃, 等. 星载激光测高仪大气干项延迟校正 [J]. 红外与激光工程. 2013, 42(4): 909-914.

【3】Tang X M, Xie J F, Mo F, et al. Footprint location prediction method of ZY3-02 altimeter [J]. Acta Geodaetica et Cartographica Sinica. 2017, 46(7): 866-873.
唐新明, 谢俊峰, 莫凡, 等. 资源三号02星激光测高仪足印位置预报方法 [J]. 测绘学报. 2017, 46(7): 866-873.

【4】Mi X S, Zhao H, Fan X W, et al. Photon-counting laser altimetry based on microchannel plate [J]. Acta Optica Sinica. 2018, 38(12): 1228001.
米小什, 赵惠, 樊学武, 等. 基于微通道板的单光子激光测高技术研究 [J]. 光学学报. 2018, 38(12): 1228001.

【5】Huang K, Li S, Ma Y, et al. Detection probability model of single-photon laser altimetry and its range accuracy [J]. Chinese Journal of Lasers. 2016, 43(11): 1110001.
黄科, 李松, 马跃, 等. 单光子模式激光测高探测概率模型与精度分析 [J]. 中国激光. 2016, 43(11): 1110001.

【6】Wang C H, Li X, Peng H. Research on simulation and analysis of spaceborne full waveform laser altimeter [J]. Laser & Optoelectronics Progress. 2015, 52(10): 102801.
王春辉, 李旭, 彭欢. 星载全波形激光测高仪仿真分析技术研究 [J]. 激光与光电子学进展. 2015, 52(10): 102801.

【7】Mendes V B, Pavlis E C. High-accuracy zenith delay prediction at optical wavelengths [J]. Geophysical Research Letters. 2004, 31(14): L14602.

【8】Yan H J. Progresses in research of atmospheric refraction [J]. World Sci-Tech R & D. 2006, 28(1): 48-58.
严豪健. 大气折射的研究进展 [J]. 世界科技研究与进展. 2006, 28(1): 48-58.

【9】Yan H J, Li F F, Wu H N. Frequency-related mapping functions at optical wavelength Annals of Shanghai Observatory Academia Sinica[J]. 0, 1997(18): 163-166.
严豪健, 李凤凤, 吴海南. 光学波段上的频率相关映射函数 中国科学院上海天文台年刊[J]. 0, 1997(18): 163-166.

【10】Mendes V B, Prates G, Pavlis E C, et al. Improved mapping functions for atmospheric refraction correction in SLR [J]. Geophysical Research Letters. 2002, 29(10): 53.

【11】Hulley G, Pavlis E C. Improvement of current refraction modeling in satellite laser ranging (SLR) by ray tracing through meteorological data . [C]∥15th International Laser Ranging Workshop, October 15-20, 2006, Canberra, Australia. Washington, D.C.: NASA. 2006.

【12】Feng D H, Pan S, Tian Z Y, et al. Research on ray tracing method in 3D discrete space with discretionary refraction index [J]. Acta Optica Sinica. 2010, 30(3): 696-701.
冯定华, 潘沙, 田正雨, 等. 任意折射率的三维离散空间光线追迹方法研究 [J]. 光学学报. 2010, 30(3): 696-701.

【13】Marini J W, Murray C W. Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees Washington, D.C [R]. NASA. 1973.

【14】Deng M J, Zhang G, Zhao R S, et al. Application of the atmospheric delay correction model in YG-13A range calibration [J]. Journal of Remote Sensing. 2018, 22(3): 373-380.
邓明军, 张过, 赵瑞山, 等. 顾及大气延迟效应的YG-13A斜距标定 [J]. 遥感学报. 2018, 22(3): 373-380.

【15】Fang P, Bevis M, Bock Y, et al. GPS meteorology: reducing systematic errors in geodetic estimates for zenith delay [J]. Geophysical Research Letters. 1998, 25(19): 3583-3586.

【16】Bromwich D H, Wang S H. Evaluation of the NCEP-NCAR and ECMWF 15- and 40-Yr reanalyses using rawinsonde data from two independent Arctic field experiments [J]. Monthly Weather Review. 2005, 133(12): 3562-3578.

【17】Pany T, Pesec P, Stangl G. Elimination of tropospheric path delays in GPS observations with the ECMWF numerical weather model [J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy. 2001, 26(6/7/8): 487-492.

【18】Chen Q M, Song S L, Zhu W Y. An analysis of the accuracy of zenith tropospheric delay calculated from ECMWF/NCEP data over Asian area [J]. Chinese Journal of Geophysics. 2012, 55(5): 1541-1548.
陈钦明, 宋淑丽, 朱文耀. 亚洲地区ECMWF/NCEP资料计算ZTD的精度分析 [J]. 地球物理学报. 2012, 55(5): 1541-1548.

【19】Yuan H W, Mei H P, Huang Y B, et al. Research on atmospheric refraction correction algorithm and model for satellite laser range-finding [J]. Acta Optica Sinica. 2011, 31(4): 0401004.
袁宏武, 梅海平, 黄印博, 等. 星载激光测距大气校正算法与模型研究 [J]. 光学学报. 2011, 31(4): 0401004.

【20】Herring T A, Quinn K. Atmospheric delay correction to GLAS laser altimeter ranges[R] . MA: Massachusetts Institute of Technology. 1999.

【21】Owens J C. Optical refractive index of air: dependence on pressure, temperature and composition [J]. Applied Optics. 1967, 6(1): 51-59.

【22】United States Air Force. U.S. Standard atmosphere [M]. Washington D. C.: National Oceanic and Atmospheric Administration. 1976.

【23】Fan D Z. Theory and techniques for on-orbit geometric calibration of space linear sensors [D]. Beijing: Peking University. 2010.
范大昭. 航天线阵传感器在轨几何标定的理论和技术 [D]. 北京: 北京大学. 2010.

【24】Wang G, Sun L Y, Wang W N, et al. Research on new portable laser rangefinder [J]. Laser & Optoelectronics Progress. 2010, 47(7): 072801.
王刚, 孙凌宇, 王卫宁, 等. 新型便携式激光测距仪的研究 [J]. 激光与光电子学进展. 2010, 47(7): 072801.

【25】Mao W, Yang L, Tie Q X. Path bending correction for refraction delay of electromagnetic waves [J]. Chinese Astronomy and Astrophysics. 2008, 32(3): 335-341.

引用该论文

Jiang Dan,Qin Yuchu,Wang Xiaoping. Sensitivity Analysis of Atmospheric Delay Corrections for Satellite-Borne Laser Altimeter[J]. Laser & Optoelectronics Progress, 2019, 56(23): 230101

江丹,覃驭楚,王小平. 星载激光测高仪大气延迟校正的敏感性分析[J]. 激光与光电子学进展, 2019, 56(23): 230101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF