首页 > 论文 > 中国激光 > 46卷 > 9期(pp:903003--1)

真空环境中脉冲激光烧蚀制备纳米银晶薄膜的生长特性

Growth Characteristics of Ag Nanocrystalline Thin Films Prepared by Pulsed Laser Ablation in Vacuum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用XeCl准分子脉冲激光,在室温、真空环境下烧蚀银靶,通过改变激光能量密度和靶衬间距,在与靶面平行放置的Si(111)衬底上沉积了一系列纳米银晶薄膜。利用扫描电镜以及X射线衍射仪、选区电子衍射技术对薄膜进行表征,结果表明:薄膜由不同尺寸的银纳米晶粒组成;在固定激光能量密度的条件下,随着靶衬间距增加,薄膜的厚度和晶粒尺寸逐渐减小,晶粒间的聚合程度减弱,薄膜(111)晶面的XRD特征谱线强度减弱,(200)晶面的特征谱线强度增强;在固定靶衬间距的条件下,随着激光能量密度的增大,薄膜的厚度和晶粒尺寸逐渐增大,晶粒间的聚合程度增强,薄膜(111)晶面的特征谱线强度增强,(200)晶面的特征谱线强度略有减弱。结合晶粒成核和传输特性、烧蚀粒子迁移率,以及薄膜沿不同晶面生长所需表面能存在差异的情况,对实验结果进行了分析。

Abstract

A silver (Ag) target was ablated using the XeCl excimer laser at room temperature in vacuum. Films were deposited on the Si(111) substrates parallel to the target surface. The scanning electron microscopy, X-ray diffraction (XRD), and selected area electron diffraction analysis results denote that the deposited films comprise Ag nanoparticles with different sizes. The fixed laser fluence increases the distance from the target to the substrate, decreases the nanoparticle size and depth of the film, and weakens the combinative extent of the nanoparticles. Further, the XRD spectrum intensity of the crystallographic face of (111) decreases, whereas that of the crystallographic face of (200) increases. When the distance from the target to the substrate is fixed, the nanoparticle size and depth of the film increases with the increasing laser fluence, and the combinative extent of the nanoparticles increases. The XRD spectrum intensity of the crystallographic face of (111) increases, whereas that of the crystallographic face of (200) barely decreases. Furthermore, the experimental results are analyzed on the basis of the nucleation and transition of the nanoparticles, mobility of the ablated particles, and surface energy required in film growth along different crystallographic faces.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0903003

所属栏目:材料与薄膜

基金项目:河北省自然科学基金、河北省研究生创新资助项目;

收稿日期:2019-03-18

修改稿日期:2019-05-22

网络出版日期:2019-09-01

作者单位    点击查看

邓泽超:河北大学物理科学与技术学院, 河北省光电信息材料重点实验室,新能源光电器件国家地方联合工程实验室, 河北 保定 071002
刘建东:河北大学物理科学与技术学院, 河北省光电信息材料重点实验室,新能源光电器件国家地方联合工程实验室, 河北 保定 071002
王旭:河北大学物理科学与技术学院, 河北省光电信息材料重点实验室,新能源光电器件国家地方联合工程实验室, 河北 保定 071002
孟旭东:河北大学物理科学与技术学院, 河北省光电信息材料重点实验室,新能源光电器件国家地方联合工程实验室, 河北 保定 071002
丁学成:河北大学物理科学与技术学院, 河北省光电信息材料重点实验室,新能源光电器件国家地方联合工程实验室, 河北 保定 071002
褚立志:河北大学物理科学与技术学院, 河北省光电信息材料重点实验室,新能源光电器件国家地方联合工程实验室, 河北 保定 071002
王英龙:河北大学物理科学与技术学院, 河北省光电信息材料重点实验室,新能源光电器件国家地方联合工程实验室, 河北 保定 071002

联系人作者:王英龙(hdwangyl@hbu. cn)

备注:河北省自然科学基金、河北省研究生创新资助项目;

【1】Langley D, Giusti G, Mayousse C et al. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology. 24(45), (2013).

【2】Morones J R, Elechiguerra J L, Camacho A et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 16(10), 2346-2353(2005).

【3】Lu Z, Rong K F, Li J et al. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. Journal of Materials Science: Materials in Medicine. 24(6), 1465-1471(2013).

【4】Perito B, Giorgetti E, Marsili P et al. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution. Beilstein Journal of Nanotechnology. 7, 465-473(2016).

【5】Mahmoodi A, Shoorshinie S Z and Dorranian D. Synthesis and characterization of AgCl nanoparticles produced by laser ablation of Ag in NaCl solution. Applied Physics A. 122(4), 452-460(2016).

【6】Wang W and Asher S A. Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications. Journal of the American Chemical Society. 123(50), 12528-12535(2001).

【7】Strehle S, Menzel S, Bartha J W et al. Electroplating of Cu(Ag) thin films for interconnect applications. Microelectronic Engineering. 87(2), 180-186(2010).

【8】Liu Y, Plate P, Hinrichs V et al. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method:research into mechanism, particle growth and optical simulation. Journal of Nanoparticle Research. 19(4), 141-146(2017).

【9】Jung Y S. Study on texture evolution and properties of silver thin films prepared by sputtering deposition. Applied Surface Science. 221, 281-287(2004).

【10】Feng T, Jiang B Y, Zhuo S et al. Study on the orientation of silver films by ion-beam assisted deposition. Applied Surface Science. 254(6), 1565-1568(2008).

【11】Oh Y and Lee M. Single-pulse transformation of Ag thin film into nanoparticles via laser-induced dewetting. Applied Surface Science. 399, 555-564(2017).

【12】Dikovska A O, Alexandrov M T, Atanasova G B et al. Silver nanoparticles produced by PLD in vacuum: role of the laser wavelength used. Applied Physics A. 113(1), 83-88(2013).

【13】Toftmann B, Doggett B, Budtz-J?rgensen C et al. Femtosecond ultraviolet laser ablation of silver and comparison with nanosecond ablation. Journal of Applied Physics. 113(8), (2013).

【14】Ganeev R A, Chakravarty U, Naik P A et al. Pulsed laser deposition of metal films and nanoparticles in vacuum using subnanosecond laser pulses. Applied Optics. 46(8), 1205-1210(2007).

【15】Alonso J C, Diamant R, Castillo P et al. Thin films of silver nanoparticles deposited in vacuum by pulsed laser ablation using a YAG∶Nd laser. Applied Surface Science. 255(9), 4933-4937(2009).

【16】Boutinguiza M, Comesa?a R, Lusqui?os F et al. Production of silver nanoparticles by laser ablation in open air. Applied Surface Science. 336, 108-111(2015).

【17】Kamakshi K. Silva J P B, Sekhar K C, et al. Substrate temperature effect on microstructure, optical, and glucose sensing characteristics of pulsed laser deposited silver nanoparticles. Plasmonics. 13(4), 1235-1241(2018).

【18】Fu G S, Wang Y L, Chu L Z et al. The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas. Europhysics Letters. 69(5), 758-762(2005).

【19】Yoshida T, Takeyama S, Yamada Y et al. Nanometer-sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas. Applied Physics Letters. 68(13), 1772-1774(1996).

【20】Deng Z C, Luo Q S, Ding X C et al. Pressure threshold and dynamics of nucleation for Si nano-crystal grains prepared by pulsed laser ablation. Acta Physica Sinica. 60(12), (2011).
邓泽超, 罗青山, 丁学成 等. 脉冲激光烧蚀制备纳米Si晶粒成核气压阈值及动力学研究. 物理学报. 60(12), (2011).

【21】Colina M, Molpeceres C, Morales M et al. Laser ablation modelling of aluminium, silver and crystalline silicon for applications in photovoltaic technologies. Surface Engineering. 27(6), 414-423(2011).

【22】Aghaei M, Mehrabian S and Tavassoli S H. Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation. Journal of Applied Physics. 104(5), (2008).

【23】Bulgakova N M and Bulgakov A V. Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Applied Physics A. 73(2), 199-208(2001).

【24】Amoruso S, Ausanio G, Bruzzese R et al. Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration. Applied Surface Science. 252(13), 4863-4870(2006).

【25】Chan W L, Averback R S, Cahill D G et al. Dynamics of femtosecond laser-induced melting of silver. Physical Review B. 78(21), (2008).

【26】Morales A M and Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science. 279(5348), 208-211(1998).

【27】Doggett B and Lunney J G. Expansion dynamics of laser produced plasma. Journal of Applied Physics. 109(9), (2011).

【28】Wang Y L, Chen C, Ding X C et al. Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas. Laser and Particle Beams. 29(1), 105-111(2011).

【29】Toftmann B, Schou J and Canulescu S. Energy distribution of ions produced by laser ablation of silver in vacuum. Applied Surface Science. 278, 273-277(2013).

【30】Deng Z C, Wang X, Liu J D et al. Distribution characteristic of Ag nanoparticles on the horizontal substrates during pulsed laser ablation process in vacuum. Journal of Synthetic Crystals. 48(1), 18-23(2019).
邓泽超, 王旭, 刘建东 等. 真空中脉冲激光烧蚀制备银纳米晶粒在水平衬底上的分布特性. 人工晶体学报. 48(1), 18-23(2019).

【31】Das D and Samanta S. Controlling the opto-electronic properties of nc-SiOx∶H films by promotion of <220> orientation in the growth of ultra-nanocrystallites at the grain boundary. Applied Surface Science. 428, 757-766(2018).

【32】Zhang J M and Xu K W. Investigation of abnormal grain growth and texture change in Ag and Cu films. Acta Physica Sinica. 52(1), 145-149(2003).
张建民, 徐可为. 银和铜膜中异常晶粒生长和织构变化的实验研究. 物理学报. 52(1), 145-149(2003).

【33】Kim H C, Theodore N D and Alford T L. Comparison of texture evolution in Ag and Ag(Al) alloy thin films on amorphous SiO2. Journal of Applied Physics. 95(9), 5180-5188(2004).

引用该论文

Zechao Deng,Jiandong Liu,Xu Wang,Xudong Meng,Xuecheng Ding,Lizhi Chu,Yinglong Wang. Growth Characteristics of Ag Nanocrystalline Thin Films Prepared by Pulsed Laser Ablation in Vacuum[J]. Chinese Journal of Lasers, 2019, 46(9): 0903003

邓泽超,刘建东,王旭,孟旭东,丁学成,褚立志,王英龙. 真空环境中脉冲激光烧蚀制备纳米银晶薄膜的生长特性[J]. 中国激光, 2019, 46(9): 0903003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF