首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1013001--1)

金纳米球-银纳米线耦合结构量子点荧光自发辐射增强及表面等离激元传导

Enhancement of Spontaneous Emission and Surface Plasmon Polariton Propagation of Quantum Dots Fluorescence in a Coupling Structure of Gold Nanosphere and Sliver Nanowire

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用原子力显微镜(AFM)、荧光显微成像系统以及时间分辨单光子计数(TCSPC)系统,对金纳米球(AuNS)-银纳米线(AgNW)耦合结构纳米间隙内的量子点荧光自发辐射增强以及表面等离激元(SPP)传导特性进行研究。实验使用两种方式实现了金纳米球和银纳米线间的耦合。第一种方式为:将金纳米球和量子点的混合溶液及银纳米线溶液依次涂覆到SiO2基片上,寻找随机存在的金纳米球-银纳米线耦合结构。第二种方式为:利用AFM进行纳米操纵,在SiO2基片上实现了可控的金纳米球和银纳米线耦合结构。利用该结构,实现了最高达到611的量子点自发辐射速率增强因子,同时也观测到了被增强的荧光激发SPP沿银纳米线传导。利用COMSOL Multiphysics仿真软件,对金纳米球-银纳米线耦合结构附近不同位置和偏振的量子点自发辐射速率增强因子进行了模拟计算,并且和单个金纳米球、单根银纳米线附近量子点自发辐射速率增强因子进行了对比,结果表明金纳米球-银纳米线耦合结构能够获得更高的自发辐射速率增强因子。计算了量子点激发的银纳米线上SPP的场分布,得到了与实验相符的结果。

Abstract

Based on the atomic force microscope (AFM), the fluorescence microscopic imaging system and the time-correlated single photon counting (TCSPC) system, the spontaneous emission enhancement of quantum dots and the fluorescence surface plasmon polariton (SPP) propagation are studied in a coupling structure of a gold nano-sphere (AuNS) and a sliver nano-wire (AgNW). The coupling between the AuNS and the AgNW is achieved in two ways. Firstly, a mixed solution of AuNSs and quantum dots, and the solution of AgNWs are successively coated on a SiO2 substrate to look for the AuNS-AgNW coupling structures that are randomly formed. Secondly, a controlled AuNS-AgNW coupling structure is achieved by using the AFM nano-manipulation. Based on the AuNS-AgNW coupling structure with quantum dots in its nano-gap, the experimental results show that the enhancement factor of the spontaneous emission rate of the quantum dots fluorescence can be up to 611 and the propagation of the fluorescence SPP along the AgNW is also observed. COMSOL Multiphysics software is used to simulate the enhancement factor of the spontaneous emission rate of a quantum dot with different positions and polarizations near the AuNS-AgNW coupling structure. The results are compared with those of a quantum dot coupled with single AuNS and single AgNW, showing that the AuNS-AgNW coupling structure can provide a higher enhancement factor of the spontaneous emission rate. The propagation of the SPP along the AgNW excited by the point source is also calculated. The simulation results agree well with the experimental results.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.1013001

所属栏目:微纳光学

基金项目:国家自然科学基金、高等学校学科创新引智计划;

收稿日期:2020-02-05

修改稿日期:2020-06-03

网络出版日期:2020-10-01

作者单位    点击查看

袁洪瑞:南开大学电子信息与光学工程学院现代光学研究所天津市微尺度光学信息技术科学重点实验室, 天津 300350
钟莹:天津大学精密仪器与光电子工程学院精密测试技术及仪器国家重点实验室, 天津 300072
刘海涛:南开大学电子信息与光学工程学院现代光学研究所天津市微尺度光学信息技术科学重点实验室, 天津 300350

联系人作者:刘海涛(liuht@nankai.edu.cn)

备注:国家自然科学基金、高等学校学科创新引智计划;

【1】Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science. 1996, 271(5251): 933-937.Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science. 1996, 271(5251): 933-937.

【2】Michler P, Imamoglu A, Mason M D, et al. Quantum correlation among photons from a single quantum dot at room temperature [J]. Nature. 2000, 406(6799): 968-970.

【3】Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography [J]. Reviews of Modern Physics. 2002, 74(1): 145-195.

【4】Li Y, Tao L, Gan F W, et al. Strain-field-induced energy tuning for self-assembled quantum dots- based single-photon sources interfacing atomic transitions [J]. Acta Photonica Sinica. 2019, 48(8): 0827001.
李杨, 陶略, 甘甫烷, 等. 用于自然原子共振的应力量子调控自组装量子点单光子源 [J]. 光子学报. 2019, 48(8): 0827001.

【5】Bauch M, Toma K, Toma M, et al. Plasmon-enhanced fluorescence biosensors: a review [J]. Plasmonics. 2014, 9(4): 781-799.

【6】Li M, Cushing S K, Wu N Q. Plasmon-enhanced optical sensors: a review [J]. The Analyst. 2015, 140(2): 386-406.

【7】Peng M, Bai Z C, Zhang Y, et al. Protein detection chip based on quantum dot fluorescence quenching method [J]. Laser & Optoelectronics Progress. 2019, 56(6): 062601.
彭嫚, 白忠臣, 张莹, 等. 基于量子点荧光猝灭法的蛋白质检测芯片 [J]. 激光与光电子学进展. 2019, 56(6): 062601.

【8】Faraon A, Majumdar A, Englund D, et al. Integrated quantum optical networks based on quantum dots and photonic crystals [J]. New Journal of Physics. 2011, 13(5): 055025.

【9】Pacifici D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of CdSe quantum dots [J]. Nature Photonics. 2007, 1(7): 402-406.

【10】Wang H P, Wang G L, Qiu P, et al. Design and characteristics analysis of single photon detector based on quantum-dot field effect transistor [J]. Chinese Journal of Lasers. 2013, 40(1): 0118001.
王红培, 王广龙, 邱鹏, 等. 量子点场效应晶体管单光子探测器的设计与特性分析 [J]. 中国激光. 2013, 40(1): 0118001.

【11】Hoang T B, Akselrod G M, Argyropoulos C, et al. Ultrafast spontaneous emission source using plasmonic nanoantennas [J]. Nature Communications. 2015, 6(1): 7788.

【12】Ratchford D, Shafiei F, Kim S, et al. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle [J]. Nano Letters. 2011, 11(3): 1049-1054.

【13】Ji B, Giovanelli E, Habert B, et al. Non-blinking quantum dot with a plasmonic nanoshell resonator [J]. Nature Nanotechnology. 2015, 10(2): 170-175.

【14】Morozov S, Gaio M, Maier S A, et al. Metal-dielectric parabolic antenna for directing single photons [J]. Nano Letters. 2018, 18(5): 3060-3065.

【15】Chang D E, S?rensen A S, Demler E A, et al. A single-photon transistor using nanoscale surface plasmons [J]. Nature Physics. 2007, 3(11): 807-812.

【16】Falk A L. Koppens F H L, Yu C L, et al. Near-field electrical detection of optical plasmons and single-plasmon sources [J]. Nature Physics. 2009, 5(7): 475-479.

【17】Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials [J]. Science. 2007, 317(5845): 1698-1702.

【18】Hoang T B, Akselrod G M, Mikkelsen M H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities [J]. Nano Letters. 2016, 16(1): 270-275.

【19】Yuan C T, Yu P, Ko H C, et al. Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots [J]. ACS Nano. 2009, 3(10): 3051-3056.

【20】Kinkhabwala A, Yu Z, Fan S, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna [J]. Nature Photonics. 2009, 3(11): 654-657.

【21】Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chemical Reviews. 2004, 104(1): 293-346.

【22】Ghosh S K, Pal T. ChemInform abstract: interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications [J]. Chemical Reviews. 2007, 107(11): 4797-4862.

【23】Pelton M. Modified spontaneous emission in nanophotonic structures [J]. Nature Photonics. 2015, 9(7): 427-435.

【24】Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser [J]. Nature. 2009, 460(7259): 1110-1112.

【25】Lenert A, Bierman D M, Nam Y, et al. A nanophotonic solar thermophotovoltaic device [J]. Nature Nanotechnology. 2014, 9(2): 126-130.

【26】Knight M W, Grady N K, Bardhan R, et al. Nanoparticle-mediated coupling of light into a nanowire [J]. Nano Letters. 2007, 7(8): 2346-2350.

【27】Hao F, Nordlander P. Plasmonic coupling between a metallic nanosphere and a thin metallic wire [J]. Applied Physics Letters. 2006, 89(10): 103101.

【28】Li P, Yan X N, Zhou F, et al. A capillary force-induced Au nanoparticle-Ag nanowire single hot spot platform for SERS analysis [J]. Journal of Materials Chemistry C. 2017, 5(13): 3229-3237.

【29】Fang Y R, Wei H, Hao F, et al. Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons [J]. Nano Letters. 2009, 9(5): 2049-2053.

【30】Hao J J, Liu T, Huang Y Z, et al. Metal nanoparticle-nanowire assisted SERS on film [J]. The Journal of Physical Chemistry C. 2015, 119(33): 19376-19381.

【31】Huang Y Z, Fang Y R, Zhang Z L, et al. Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering [J]. Light: Science & Applications. 2014, 3(8): e199.

【32】Wei H, Hao F, Huang Y Z, et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems [J]. Nano Letters. 2008, 8(8): 2497-2502.

【33】Wei H, Wang Z, Tian X, et al. Cascaded logic gates in nanophotonic plasmon networks Nature Communications[J]. 0, 2(1): 387.

【34】Wang G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides [J]. Optics Letters. 2004, 29(17): 1992-1994.

【35】Akimov A V, Mukherjee A, Yu C L, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J]. Nature. 2007, 450(7168): 402-406.

【36】Tame M S. McEnery K R, ?zdemir ? K, et al. Quantum plasmonics [J]. Nature Physics. 2013, 9(6): 329-340.

【37】Maier S A, Brongersma M L, Kik P G, et al. Plasmonics: a route to nanoscale optical devices [J]. Advanced Materials. 2001, 13(19): 1501-1505.

【38】Wei H, Li Z P, Tian X R, et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks [J]. Nano Letters. 2011, 11(2): 471-475.

【39】Li Q, Wei H, Xu H X. Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire [J]. Nano Letters. 2015, 15(12): 8181-8187.

【40】Frimmer M, Chen Y T, Koenderink A F. Scanning emitter lifetime imaging microscopy for spontaneous emission control [J]. Physical Review Letters. 2011, 107(12): 123602.

【41】Li Q, Wei H, Xu H X. Resolving single plasmons generated by multiquantum-emitters on a silver nanowire [J]. Nano Letters. 2014, 14(6): 3358-3363.

【42】Chang D E, S?rensen A S, Hemmer P R, et al. Strong coupling of single emitters to surface plasmons [J]. Physical Review B. 2007, 76(3): 035420.

【43】Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas [J]. Nature Photonics. 2014, 8(11): 835-840.

【44】Bogdanov S, Shalaginov M Y, Lagutchev A, et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas [J]. Nano Letters. 2018, 18(8): 4837-4844.

【45】Punj D, Regmi R, Devilez A, et al. Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations [J]. ACS Photonics. 2015, 2(8): 1099-1107.

【46】Fukui T, Naiki H, Masuo S. In situ observation of surface-enhanced Raman scattering from silver nanoparticle dimers and trimers fabricated using atomic force microscopy manipulation [J]. The Journal of Physical Chemistry C. 2017, 121(35): 19329-19333.

【47】Tong L M, Zhu T, Liu Z F. Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement [J]. Applied Physics Letters. 2008, 92(2): 023109.

【48】Kenens B, Rybachuk M, Hofkens J, et al. Silver nanowires terminated by metallic nanoparticles as effective plasmonic antennas [J]. Journal of Physical Chemistry C. 2013, 117(6): 2547-2553.

【49】Bek A, Jansen R, Ringler M, et al. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches [J]. Nano Letters. 2008, 8(2): 485-490.

【50】Schietinger S, Barth M, Aichele T, et al. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature [J]. Nano Letters. 2009, 9(4): 1694-1698.

【51】Andersen S K H, Kumar S, Bozhevolnyi S I. Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna [J]. Nano Letters. 2017, 17(6): 3889-3895.

【52】Khatua S. Paulo P M R, Yuan H F, et al. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods [J]. ACS Nano. 2014, 8(5): 4440-4449.

【53】Berberan-Santos M N, Valeur B. Molecular fluorescence: principles and application [M]. Germany: Wiley-VCH. 2001.

【54】Sugimoto H, Chen T, Wang R, et al. Plasmon-enhanced emission rate of silicon nanocrystals in gold nanorod composites [J]. ACS Photonics. 2015, 2(9): 1298-1305.

【55】Focsan M, Gabudean A M, Vulpoi A, et al. Controlling the luminescence of carboxyl-functionalized CdSe/ZnS core-shell quantum dots in solution by binding with gold nanorods [J]. Journal of Physical Chemistry C. 2014, 118(43): 25190-25199.

【56】Yang X G, Bao D H, Li B J. Plasmon-mediated whispering-gallery-mode emission from quantum-dot-coated gold nanosphere [J]. Journal of Physical Chemistry C. 2015, 119(45): 25476-25481.

【57】Purcell E M. Spontaneous emission probabilities at radio frequencies [J]. Physical Review. 1946, 69(11): 681.

【58】Palik E D. Handbook of optical constants of solids[M]. American: , 1985.

【59】Jia H W, Liu H T, Zhong Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas [J]. Scientific Reports. 2015, 5(1): 8456.

【60】Lin Y, Zhong Y, Liu H T. Modification of single photon fluorescence emission of single quantum dots with different substrates [J]. Chinese Journal of Lasers. 2018, 45(6): 0606005.
林雨, 钟莹, 刘海涛. 不同基片对单量子点单光子荧光发射的调控 [J]. 中国激光. 2018, 45(6): 0606005.

【61】Wang H Y, Lin Y, Ma P Z, et al. Tunable fluorescence emission of molecules with controllable positions within the metallic nanogap between gold nanorods and a gold film [J]. Journal of Materials Chemistry C. 2019, 7(43): 13526-13535.

【62】Agio M. Optical antennas as nanoscale resonators [J]. Nanoscale. 2012, 4(3): 692-706.

【63】Schuller J A, Barnard E S, Cai W, et al. Plasmonics for extreme light concentration and manipulation [J]. Nature Materials. 2010, 9(3): 193-204.

【64】Giannini V. Fernández-Domínguez A I, Sonnefraud Y, et al. Controlling light localization and light-matter interactions with nanoplasmonics [J]. Small. 2010, 6(22): 2498-2507.

【65】McBride J, Treadway J, Feldman L C, et al. Structural basis for near unity quantum yield core/shell nanostructures [J]. Nano Letters. 2006, 6(7): 1496-1501.

【66】Smith A M, Mohs A M, Nie S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain [J]. Nature Nanotechnology. 2009, 4(1): 56-63.

【67】Frecker T, Bailey D, Arzeta-Ferrer X, et al. Review: quantum dots and their application in lighting, displays, and biology [J]. ECS Journal of Solid State Science and Technology. 2016, 5(1): R3019-R3031.

【68】Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence [J]. Physical Review Letters. 2006, 96(11): 113002.

引用该论文

Yuan Hongrui,Zhong Ying,Liu Haitao. Enhancement of Spontaneous Emission and Surface Plasmon Polariton Propagation of Quantum Dots Fluorescence in a Coupling Structure of Gold Nanosphere and Sliver Nanowire[J]. Chinese Journal of Lasers, 2020, 47(10): 1013001

袁洪瑞,钟莹,刘海涛. 金纳米球-银纳米线耦合结构量子点荧光自发辐射增强及表面等离激元传导[J]. 中国激光, 2020, 47(10): 1013001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF