首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:221024--1)

基于同步辐射CT图像重建的对比度增强方法

Contrast Enhancement Method Based on Synchrotron Radiation CT Image Reconstruction

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

同步辐射光源具有高斯分布特性,能使生物样品重建图像呈灰度分布不均匀和对比度低的特点,同时重建图像受背景噪声影响,进而造成重建生物样品的一些细节特征难以被观察和分析。针对该问题,提出了一种基于图像重建的同步辐射CT图像对比度增强方法。首先基于滤波反投影(FBP)重建算法和联合代数迭代重建技术(SART)算法分别重建图像,得到两种重建算法的重建数值区间范围,然后将FBP的数值区间映射到SART的数值区间,最后将经过映射之后的重建图像结合内容自适应图像增强算法以提高重建图像的质量。实验结果表明,所提算法不仅能够有效消除背景中的噪声,而且提高了重建图像的对比度,能更清晰地显示出重建样品的细节。

Abstract

The reconstructed images of biological samples display uneven gray distribution and low contrast, since the synchrotron radiation light source possesses Gaussian distribution characteristics. Moreover, the reconstructed images are also affected by background noise, causing difficulty in observing and analyzing various details of reconstructed images of the biological samples. In order to address this situation, a synchrotron radiation CT image contrast enhancement method, based on image reconstruction, is proposed in this paper. First, the filtered back projection (FBP) reconstruction algorithm and simultaneous algebra reconstruction technique (SART) algorithm are used to reconstruct the image respectively, and the reconstructed numerical range of the two algorithms is obtained; then, the numerical interval reconstructed by the FBP algorithm is mapped to the numerical interval reconstructed by the SART. Finally, the image reconstructed by mapping is combined with a content-adaptive image enhancement algorithm to improve the reconstructed image quality. The experimental results demonstrate that the proposed algorithm can not only effectively eliminate the background noise, but also improve the contrast of the reconstructed image; therefore, allowing for more optimal visualization of the details in the reconstructed samples.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/LOP57.221024

所属栏目:图像处理

基金项目:国家自然科学基金、天津职业技术师范大学科研基金;

收稿日期:2020-02-21

修改稿日期:2020-05-29

网络出版日期:2020-11-01

作者单位    点击查看

冀东江:天津职业技术师范大学理学院, 天津 300222
渠刚荣:北京交通大学理学院, 北京 100044
胡春红:天津医科大学生物医学工程与技术学院, 天津 300070
赵雨晴:天津医科大学生物医学工程与技术学院, 天津 300070

联系人作者:冀东江(zjkjdj@tute.edu.cn)

备注:国家自然科学基金、天津职业技术师范大学科研基金;

【1】Liang C H, Wang Y D, Du G H, et al. Research on the contrast enhancement algorithm of synchrotron radiation X-ray image [J]. Acta Optica Sinica. 2015, 35(3): 0310003.
梁传晖, 王玉丹, 杜国浩, 等. 同步辐射X射线图像对比度增强算法研究 [J]. 光学学报. 2015, 35(3): 0310003.

【2】Hu Y B, Tang C, Tao S. Enhancement of optical interferometry fringe patterns based on multiscale Retinex algorithm [J]. Laser & Optoelectronics Progress. 2019, 56(24): 241006.
胡一冰, 唐晨, 陶珊. 基于多尺度Retinex算法的光干涉条纹图像增强 [J]. 激光与光电子学进展. 2019, 56(24): 241006.

【3】Yousuf M. Rakib M R H. An effective image contrast enhancement method using global histogram equalization [J]. Journal of Scientific Research. 2010, 3(1): 43-50.Yousuf M. Rakib M R H. An effective image contrast enhancement method using global histogram equalization [J]. Journal of Scientific Research. 2010, 3(1): 43-50.

【4】Chen Y Y. Exposure-based weighted dynamic histogram equalization for image contrast enhancement [J]. International Journal of Automation and Smart Technology. 2015, 4(4): 27-38.

【5】Kandeel A, Abbas A M, Hadhoud M M, et al. A modified histogram based fast enhancement algorithm [J]. Signal & Image Processing. 2014, 5(1): 261-269.

【6】Georgieva V M. An approach for computed tomography images enhancement Electronics & Electrical Engineering[J]. 0, 2010(98): 71-74.

【7】Hou X D, Zheng M J, Liu H P, et al. Medical image enhancement algorithm based on shearlet domain and improve Pal-King algorithm [J]. Laser & Optoelectronics Progress. 2019, 56(3): 031006.
侯向丹, 郑梦敬, 刘洪普, 等. 基于剪切波和改进Pal-King的医学图像增强算法研究 [J]. 激光与光电子学进展. 2019, 56(3): 031006.

【8】Son M, Lee Y, Kang H, et al. Art-photographic detail enhancement [J]. Computer Graphics Forum. 2014, 33(2): 391-400.

【9】Xu L, Lu C W, Xu Y, et al. Image smoothing via L0 gradient minimization [J]. ACM Transactions on Graphics. 2011, 30(6): 174.

【10】Kou F, Chen W H, Li Z G, et al. Content adaptive image detail enhancement [J]. IEEE Signal Processing Letters. 2015, 22(2): 211-215.

【11】Natterer F, Wang G. The mathematics of computerized tomography [J]. Medical Physics. 2002, 29(1): 107-108.

【12】Chen L C. Mathematical method and application of tomography[M]. Sichuan: Southwest Jiaotong University Press, 1994, 60-63.
陈立成. 层析成像的数学方法与应用[M]. 四川: 西南交通大学出版社, 1994, 60-63.

【13】Andersen A H, Kak A C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm [J]. Ultrasonic Imaging. 1984, 6(1): 81-94.

【14】Jian J B, Yang H, Zhao X Y, et al. Visualization of microvasculature and thrombi by X-ray phase-contrast computed tomography in hepatocellular carcinoma [J]. Journal of Synchrotron Radiation. 2016, 23(2): 600-605.

【15】Ji D J, Qu G R, Hu C H, et al. Anisotropic total variation minimization approach in in-line phase-contrast tomography and its application to correction of ring artifacts [J]. Chinese Physics B. 2017, 26(6): 060701.

【16】Peli E. Contrast in complex images [J]. Journal of the Optical Society of America. A, Optics and Image Science. 1990, 7(10): 2032-2040.

【17】Digital image processing[M]. Ruan Q Q: Ruan Y Z, Transl. 3rd ed. Beijing: Electronic Industry Press, 2011, 66-67.
Gonzalez R C, Woods R E, Gonzalez R C, Woods R E. 数字图像处理[M]. 阮秋琦: 阮宇智, 译. 3版. 北京: 电子工业出版社, 2011, 66-67.

引用该论文

Ji Dongjiang,Qu Gangrong,Hu Chunhong,Zhao Yuqing. Contrast Enhancement Method Based on Synchrotron Radiation CT Image Reconstruction[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221024

冀东江,渠刚荣,胡春红,赵雨晴. 基于同步辐射CT图像重建的对比度增强方法[J]. 激光与光电子学进展, 2020, 57(22): 221024

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF