首页 > 论文 > 光学学报 > 40卷 > 20期(pp:2001003--1)

便携式多通道辐射参考光源的设计与测试

Design and Testing of a Portable Multichannel Reference Light Source

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

星载同步监测大气校正仪(SMAC)用于获取遥感图像中时间同步、空间匹配的多光谱偏振大气信息,为高分辨率遥感图像的大气校正提供了气溶胶、水汽等微物理参数。为满足SMAC环境试验过程中现场光学性能标定的需要,设计了一种便携式多通道辐射参考光源(PMRLS)。PMRLS采用与SMAC一致的多通道光学设计,且各通道均为独立发光组件。发光组件采用发光体配合扩散板形成均匀照明,在可见近红外波段、短波红外波段分别选用LED和小功率卤钨灯作为发光体以降低整体功耗,采用低噪声稳定电流源驱动光源,结合散热片和风扇的散热设计以保证光源温度稳定性,并通过结构限位固定结构位置关系以提高光源测试的重复性。通过PMRLS应用对象,即SMAC,将积分球光源的辐亮度直接等效传递至PMRLS,并进行了非稳定度、非重复度评价。性能测量结果显示,SMAC地面检测光源各通道输出能量与SMAC动态范围典型辐亮度值的偏差在7%之内,非稳定度优于0.76%,非重复度优于1.3%,测量结果表明研制的PMRLS能够满足SMAC性能快速监测的需求。

Abstract

The space-borne synchronous monitoring atmospheric corrector (SMAC) is a sensor that can obtain real-time spatial multispectral polarization information of the atmosphere. In this way, aerosol and water vapor parameters that are then used for the atmospheric correction of high-spatial-resolution images can be provided. A portable multichannel reference light source (PMRLS) was designed to evaluate the optical performance of the SMAC during environmental testing. The multichannel design of this source was consistent with that of the SMAC and had independent luminous components corresponding to each channel. A luminous element was equipped with a semitransparent diffuser plate, thus, enabling the luminous components to produce uniform illumination. To reduce the power consumption, a light-emitting diode and halogen tungsten lamp were chosen as the luminous elements at the visible and near-infrared band and the short-wave infrared band, respectively. The luminous element was driven by a low-noise stable current and cooled by an electric fan and cooling fin so as to improve the temperature stability of the PMRLS. In addition, the position of the PMRLS was limited by design to improve its repeatability. The radiance adjustment and performance testing for the PMRLS were performed using the SMAC. The maximal deviation in the radiance found during the PMRLS''s radiance adjustment was within 7%, and the instability and non-repeatability values were less than 0.76% and 1.3%, respectively. Overall, therefore, the performance of the PMRLS meets the requirements for a quick evaluation of the SMAC.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:V557+.4

DOI:10.3788/AOS202040.2001003

所属栏目:大气光学与海洋光学

基金项目:王宽诚率先人才计划“卢嘉锡国际团队项目”;

收稿日期:2020-04-30

修改稿日期:2020-07-03

网络出版日期:2020-10-01

作者单位    点击查看

李孟凡:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
胡亚东:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
崔珊珊:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
于新宇:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
裘桢炜:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
厉卓然:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
王相京:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
张爱文:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
孙晓兵:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031

联系人作者:胡亚东(huyadong@aiofm.ac.cn)

备注:王宽诚率先人才计划“卢嘉锡国际团队项目”;

【1】Li Z Q, Chen X F, Ma Y L, et al. An overview of atmospheric correction for optical remote sensing satellites [J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition). 2018, 10(1): 6-15.
李正强, 陈兴峰, 马龙夭, 等. 光学遥感卫星大气校正研究综述 [J]. 南京信息工程大学学报(自然科学版). 2018, 10(1): 6-15.

【2】Qi X Y, Tian Q J. The advances in the study of atmospheric correction for optical remote sensing [J]. Remote Sensing for Land & Resources. 2005, 17(4): 1-6.
亓雪勇, 田庆久. 光学遥感大气校正研究进展 [J]. 国土资源遥感. 2005, 17(4): 1-6.
Qi X Y, Tian Q J. The advances in the study of atmospheric correction for optical remote sensing [J]. Remote Sensing for Land & Resources. 2005, 17(4): 1-6.
亓雪勇, 田庆久. 光学遥感大气校正研究进展 [J]. 国土资源遥感. 2005, 17(4): 1-6.

【3】Niu Z. Basic idea and new advance in atmospheric correction for optical remote sensing [J]. Remote Sensing Technology and Application. 1998, 13(1): 50-55.
牛铮. 光学遥感大气订正总体思路与最新进展 [J]. 遥感技术与应用. 1998, 13(1): 50-55.
Niu Z. Basic idea and new advance in atmospheric correction for optical remote sensing [J]. Remote Sensing Technology and Application. 1998, 13(1): 50-55.
牛铮. 光学遥感大气订正总体思路与最新进展 [J]. 遥感技术与应用. 1998, 13(1): 50-55.

【4】Reuter D C. McCabe G H, Dimitrov R, et al. The LEISA/atmospheric corrector (LAC) on EO-1[C]∥IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings of IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), July 9-13, 2001, Sydney, NSW, Australia, Australia. New York: , 2001, 46-48.

【5】Dubovik O, Li Z Q, Mishchenko M I, et al. Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2019, 224: 474-511.Dubovik O, Li Z Q, Mishchenko M I, et al. Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2019, 224: 474-511.

【6】Hu Y D, Hu Q Y, Sun B, et al. Double-angle polarized atmospheric corrector for remote sensing images [J]. Optics and Precision Engineering. 2015, 23(3): 652-659.
胡亚东, 胡巧云, 孙斌, 等. 遥感图像双角度偏振大气校正仪 [J]. 光学精密工程. 2015, 23(3): 652-659.

【7】Kang Q. Research on system-level radiometric and polarized calibration method in laboratory of polarization remote sensors [D]. Hefei: University of Science and Technology of China. 2018.
康晴. 偏振遥感器实验室系统级辐射与偏振定标方法研究 [D]. 合肥: 中国科学技术大学. 2018.

【8】Qie L L, Ma Y, Chen X F, et al. Aerosol model assumption: the retrievals of aerosol optical depth from satellite near-infrared polarimetric measurements [J]. Journal of Infrared and Millimeter Waves. 2016, 35(5): 569-577.
伽丽丽. 马, 陈兴峰, 等. 卫星近红外偏振通道反演气溶胶光学厚度的气溶胶模型影响 [J]. 红外与毫米波学报. 2016, 35(5): 569-577.

【9】Lu E, Yan C X, Wu Q W, et al. Research on adaptability of optical remote sensors in mechanical and space thermal environments Chinese Optics and Applied Optics[J]. 0, 2009(5): 364-376.
卢锷, 颜昌翔, 吴清文, 等. 空间光学遥感器环境适应性设计与试验研究 中国光学与应用光学[J]. 0, 2009(5): 364-376.

【10】Zhao Y H, Li Y, Jin L B, et al. High precision radiometric calibration technology for visible and infrared multispectral imager [J]. Aerospace Shanghai. 2019, 36(S2): 106-111.
赵艳华, 李岩, 晋利兵, 等. 全谱段光谱成像仪高精度辐射定标技术 [J]. 上海航天. 2019, 36(S2): 106-111.

【11】Zhang Z, Li X S, Wan Z, et al. Design and measurement of radiometric performance of ultra-large aperture uniform light source [J]. Chinese Journal of Lasers. 2017, 44(4): 0410003.
张钊, 李宪圣, 万志, 等. 超大口径均匀光源辐射性能设计与测试 [J]. 中国激光. 2017, 44(4): 0410003.

引用该论文

Li Mengfan,Hu Yadong,Cui Shanshan,Yu Xinyu,Qiu Zhenwei,Li Zhuoran,Wang Xiangjing,Zhang Aiwen,Sun Xiaobing. Design and Testing of a Portable Multichannel Reference Light Source[J]. Acta Optica Sinica, 2020, 40(20): 2001003

李孟凡,胡亚东,崔珊珊,于新宇,裘桢炜,厉卓然,王相京,张爱文,孙晓兵. 便携式多通道辐射参考光源的设计与测试[J]. 光学学报, 2020, 40(20): 2001003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF