Photonics Research, 2019, 7 (11): 11001314, Published Online: Nov. 1, 2019   

Integrated flat-top reflection filters operating near bound states in the continuum Download: 506次

Author Affiliations
1 Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Samara 443001, Russia
2 Samara National Research University, Samara 443086, Russia
Abstract
We propose and theoretically and numerically investigate narrowband integrated filters consisting of identical resonant dielectric ridges on the surface of a single-mode dielectric slab waveguide. The proposed composite structures operate near a bound state in the continuum (BIC) and enable spectral filtering of transverse-electric-polarized guided modes propagating in the waveguide. We demonstrate that by proper choice of the distances between the ridges, flat-top reflectance profiles with steep slopes and virtually no sidelobes can be obtained using just a few ridges. In particular, the structure consisting of two ridges can optically implement the second-order Butterworth filter, whereas at a larger number of ridges, excellent approximations to higher-order Butterworth filters can be achieved. Owing to the BIC supported by the ridges constituting the composite structure, the flat-top reflection band can be made arbitrarily narrow without increasing structure size. In addition to the filtering properties, the investigated structures support another type of BIC—the Fabry–Perot BIC—arising when the distances between adjacent ridges meet the Fabry–Perot resonance condition. In the vicinity of the Fabry–Perot BIC, an effect similar to electromagnetically induced transparency is observed, namely, sharp transmittance peaks against the background of a wide transmittance dip.

Leonid L. Doskolovich, Evgeni A. Bezus, Dmitry A. Bykov. Integrated flat-top reflection filters operating near bound states in the continuum[J]. Photonics Research, 2019, 7(11): 11001314.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!