首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:181402--1)

阳极氧化铝表面激光处理工艺与机理

Laser Surface Processing on Anodic Aluminum Oxide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了解决铝材表面激光处理无法形成高色差、高对比度的黑色图形问题,以阳极氧化5052铝合金为研究对象,选用脉冲宽度为4 ns的光纤激光器,设定扫描速度为130 mm/s,频率为300 kHz,扫描间距为0.005 mm,设定功率为27%P0~33%P0(P0为激光器的额定功率),以得到高色差、高对比度的黑色图形,研究激光功率对图形对比度及微观形貌的影响,分析阳极氧化铝表面激光处理形成图形的机理。结果表明:当激光功率超过1.64 W时,激光能量达到铝材熔化阈值,材料表面开始形成图形,随着功率的增大,对比度逐渐上升;当激光功率增大到2.13~2.76 W时,铝材表面熔化与蒸发形成细裂纹的微观形貌,宏观显示为黑色,对比度达到最大;激光功率增大至3.32 W后,铝材表面完全熔化,细裂纹形貌消失,宏观显示为灰白色,对比度下降。该技术有助于激光与铝材作用机理的进一步研究,对推动物联网技术的发展具有重要意义。

Abstract

To solve the problem of laser surface processing not forming high-chromatic-aberration and high-contrast black patterns on aluminum alloys, a fiber laser machine with a 4-ns pulse width is used to mark 5052 anodic aluminum oxide (AAO) alloy at a scanning speed of 130 mm/s, a frequency of 300 kHz, a scanning pitch of 0.005 mm, and a setup power of 27%P0-33%P0 (P0 is the rated power of the laser). We obtain a black pattern with a high chromatic aberration and high contrast. The effect of the laser power on the contrast and micro-morphology of the pattern is studied, and the mechanism of pattern formation by laser surface processing on the AAO is analyzed. Results show that when the laser power exceeds 1.64 W, the laser energy reaches the melting threshold of aluminum and a pattern is formed on the surface. With the increase of laser power, the contrast gradually increases. When the laser power increases to 2.13-2.76 W, the AAO surface forms a fine-crack micro-morphology by melting and evaporation, the macroscopic display is black, and the contrast reaches the maximum. When the laser power increases to 3.32 W, the surface of the aluminum material melts completely, the fine-crack micro-morphology disappears, the macroscopic display is grayish white, and the contrast decreases. These results contribute to further research on the mechanism of laser surface processing on aluminum, which is helpful for promoting the development of the Internet of Things.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.181402

所属栏目:激光器与激光光学

基金项目:国家自然科学基金;

收稿日期:2019-01-21

修改稿日期:2019-04-09

网络出版日期:2019-09-01

作者单位    点击查看

李彤彤:上海大学省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072上海大学材料科学与工程学院, 上海 200072
沈宝东:上海大学材料科学与工程学院, 上海 200072上海银玛标识股份有限公司, 上海 201601
李重河:上海大学省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072上海大学材料科学与工程学院, 上海 200072
兰豹豹:上海大学省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072上海大学材料科学与工程学院, 上海 200072
陈光耀:上海大学材料科学与工程学院, 上海 200072

联系人作者:沈宝东(yinmabiaoshi@163.com)

备注:国家自然科学基金;

【1】Han T, Wen P Y, Wang C Y et al. Research progress in PAA template. Materials Review. 24(1), 115-119(2010).
韩婷, 温培源, 王晨雨 等. 多孔阳极氧化铝模板制备的研究进展. 材料导报. 24(1), 115-119(2010).

【2】Guo Z G, Liu X D and Ni Y. Applied research of laser marking in code bar. Laser Journal. 25(3), 72-73(2004).
郭治国, 刘晓东, 倪宇. 激光标刻在条码技术中的应用研究. 激光杂志. 25(3), 72-73(2004).

【3】Ding Y X and Zhou L Z. Status and development of laser surface treating. Metal Hotworking Technology. 36(6), 69-72(2007).
丁阳喜, 周立志. 激光表面处理技术的现状及发展. 热加工工艺. 36(6), 69-72(2007).

【4】Han H M, Han J P, Song K W et al. A method of laser purge aluminum alloy. Journal of Solid Rocket Technology. 40(6), 776-779(2017).
韩红敏, 韩建平, 宋可为 等. 铝合金的一种激光表面处理方法. 固体火箭技术. 40(6), 776-779(2017).

【5】Gao H Z, Li J M and Huo M Y. Development and expectation of coloring mechanism of nanosecond laser on metal surface. Applied Laser. 37(5), 752-758(2017).
高鸿志, 李建美, 霍孟友. 纳秒激光金属表面着色技术机理研究的发展与展望. 应用激光. 37(5), 752-758(2017).

【6】Li Y B, Bai F, Fan W Z et al. Color difference analysis of femtosecond laser colorized metals. Acta Optica Sinica. 36(7), (2016).
李阳博, 柏锋, 范文中 等. 飞秒激光金属着色颜色差分析. 光学学报. 36(7), (2016).

【7】Xie Z W, Dong S Y, Yan S X et al. Morphological adjustment of 304 stainless steel by picosecond laser micro-nano fabrication. Laser & Optoelectronics Progress. 55(3), (2018).
谢志伟, 董世运, 闫世兴 等. 皮秒激光微纳加工304不锈钢形貌调控. 激光与光电子学进展. 55(3), (2018).

【8】Cao R H. Research on quality assessment and evaluation technique of 2D-barcodes using laser direct part marking. Jinan: Shandong University. (2012).
曹荣华. 激光直接标记二维条码的质量检测与评价技术研究. 济南: 山东大学. (2012).

【9】Tao L, Li J M and Li Y L. Processing parameters optimization and quality inspection of water-assisted laser marking two dimensional barcodes on metal surfaces. Applied Laser. 37(2), 268-275(2017).
陶亮, 李建美, 李云龙. 水辅助条件下金属表面激光标记二维条码质量检测与工艺优化. 应用激光. 37(2), 268-275(2017).

【10】Wu Y S, Li J M, Lu C H et al. Influence of laser parameters on quality of laser direct marked data matrix symbols on aluminum alloy. Mechanical & Electrical Engineering Magazine. 31(7), 865-869(2014).
武玉松, 李建美, 路长厚 等. 激光参数对铝合金表面标刻条码质量的影响研究. 机电工程. 31(7), 865-869(2014).

【11】Wei X L, Li C L, Xue W et al. Smart phone recognition characteristics of laser marking barcodes on aluminum alloy surface. Laser Technology. 40(5), 633-637(2016).
魏鑫磊, 李春林, 薛伟 等. 激光标刻铝合金2维码的手机识读特性研究. 激光技术. 40(5), 633-637(2016).

【12】Penide J, Quintero F, Riveiro A et al. High contrast laser marking of alumina. Applied Surface Science. 336, 118-128(2015).

【13】Li X S, He W P, Lei L et al. Laser direct marking applied to rasterizing miniature data matrix code on aluminum alloy. Optics & Laser Technology. 77, 31-39(2016).

引用该论文

Tongtong Li,Baodong Shen,Chonghe Li,Baobao Lan,Guangyao Chen. Laser Surface Processing on Anodic Aluminum Oxide[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181402

李彤彤,沈宝东,李重河,兰豹豹,陈光耀. 阳极氧化铝表面激光处理工艺与机理[J]. 激光与光电子学进展, 2019, 56(18): 181402

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF