首页 > 论文 > 中国激光 > 48卷 > 1期(pp:110001--1)

星-地激光雷达联合观测合肥地区的气溶胶垂直分布

Joint Observations of Vertical Distribution of Aerosols in Hefei Area by Spaceborne and Ground-Based Lidars

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过匹配星载CALIOP过境合肥时间,筛选Aerosol-lidar的观测数据,选取4个典型天气个例[沙尘天气、多云天气、中度污染(无云)、中度污染(有云)],对合肥地区的气溶胶进行联合观测,并对气溶胶的类型、气溶胶的变化、气溶胶污染的成因及来源进行分析。结果表明,多云天气下,星载激光雷达对底层气溶胶探测时会受到天气的影响,而地基激光雷达的探测效果较佳,可以通过定点连续观测距离的校正信号准确地反映气溶胶含量和变化特点。星-地激光雷达的联合观测可以更好地分析多种复杂天气的气溶胶变化。联合观测结果表明:轻度污染的沙尘型和受污染的浮尘型气溶胶主要集中在0.8~1.6km高度范围内,退偏振比集中在0.18~0.20之间;多云天气的气溶胶主要为污染大陆型,集中在0.4~1.2km高度范围内,其退偏振比在0.015~0.020之间,气溶胶含量很少且为具有球形粒子属性的细颗粒物;中度污染(无云)天气的气溶胶同时包含污染浮尘型和污染大陆型,主要集中在0.3~1.3km高度范围内,退偏振比在0.08以下,具有明显的球形粒子属性;中度污染(有云)天气的气溶胶也同时包含污染浮尘型和污染大陆型,主要集中在0.8~1.4km高度范围内,退偏振比在0.075~0.100范围内,为粒径较小的球形粒子。

Abstract

Objective As aerosols easily spread biological organisms (such as viruses and germs) and exert an extinction effect, they pose serious threats to public health and travel. In addition, with the rapid development of China''s economy, intensive industrial carbon emissions and automobile exhaust caused the increase of the amounts of man-made aerosols in many areas of China. Therefore, monitoring these aerosols by remote sensing is necessitated. Joint observations by space-borne and ground-based lidars can capture the temporal and spatial changes in aerosol emissions. The comparative studies under various weather conditions were rarely reported. The differences among the different weather conditions are still unclear. In this paper, we filtered the observation Aerosol-lidar data by matching the time at which the spaceborne CALIOP transits through Hefei under four typical weather conditions: dusty, cloudy, moderately polluted without clouds, and moderately polluted with clouds. We conducted joint aerosol observations in Hefei, and analyzed the types of aerosols, their changes, and the causes and sources of aerosol pollution.

Methods We compared the vertical distributions and profiles of the aerosols in the observation data of Aerosol-lidar and CALIOP. Using the PM2.5and PM10 concentration data at the ground stations, we also determined the changes, vertical distributions, and causes of aerosols. The horizontal aerosol distributions were determined from the remote-sensing true-color images of MODIS. The causes of aerosol changes were deduced from the wind speeds and directions near the ground. Finally, the backward trajectories in the four study cases were analyzed in HYPSLIT mode. The lidar equation by the traditional Fernald algorithm was used in this article.

Results and Discussions According to the joint observations, the polluted dust aerosol in dusty (lightly polluted) weather was concentrated in the 0.8- to 1.6-km height range, and the dust type were dust and polluted dust. The depolarization ratio was concentrated in the 0.18--0.20 range. In cloudy weather, the main dust type was polluted continental type concentrated in the 0.4- to 1.2-km height range, with depolarization ratios between 0.015 and 0.020. The aerosol content was very small and the particles were fine and spherical. In moderately polluted cloudless weather, polluted dust coexisted with polluted continental-type aerosols. The particles were concentrated in the 0.3- to 1.3-km height range, and the depolarization ratio was below 0.080, indicating an obvious spherical attribute. In moderately polluted cloudy weather, polluted dust coexisted with polluted continental-type aerosols again, but the main height range was 0.8--1.4km, and the depolarization ratio ranged from 0.075 to 0.100, indicating small-sized spherical particles. Small aerosols showed the properties of spherical particles with low depolarization ratios. The joint observations of space-borne and ground-based lidar more accurately captured and characterized the aerosol distributions at different time and from different locations than single observations. Although the ground-based lidar results were more accurate, the space-borne lidar provided better resolution for observing the spatial changes of aerosols. NOAA provided the HYSPLIT backward trajectory model for analyzing the sources and transport paths of the aerosols in the four weather cases. The HYSPLIT results confirmed different sources of the aerosols, to determine different conditions of aerosol formation by combining with the wind speeds and directions.

Conclusions Cloudy weather conditions affected the detection of the bottom aerosols by the space-borne lidar. To better obtain the aerosol content and the characteristics of its change, the range-corrected signal was continuously observed at fixed point by the ground-based lidar. The aerosol changes largely differed under different weather conditions, and the types, causes and sources of aerosols were also highly variable. When the stratification of the atmosphere is stable, aerosols tend to accumulate locally and cannot diffuse; in contrast, when the atmospheric fluidity is strong, a small amount of pollutant dust mixes with the local aerosols and the weather becomes hazy, resulting from the change and transmission of aerosols. The combination of various data, such as lidar observations and ground particle-concentration data, wind speed, and wind direction, can explain the changes and causes of aerosols. In future work, we should combine these data into comprehensive observations of weather changes, and thereby build a model for monitoring urban aerosol pollution.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:X831

DOI:10.3788/CJL202148.0110001

所属栏目:遥感与传感器

基金项目:中国科学院战略性先导科技专项(A类)资助(XDA17040524)、中科院合肥物质科学研究院“十三五”规划重点支持项目(KP-2019-05)

收稿日期:2020-06-24

修改稿日期:2020-08-13

网络出版日期:2021-01-01

作者单位    点击查看

杨昊:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026先进激光技术安徽省实验室, 安徽 合肥 230037
谢晨波:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031先进激光技术安徽省实验室, 安徽 合肥 230037
方志远:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026先进激光技术安徽省实验室, 安徽 合肥 230037
王邦新:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031先进激光技术安徽省实验室, 安徽 合肥 230037
邢昆明:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031先进激光技术安徽省实验室, 安徽 合肥 230037
曹也:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026先进激光技术安徽省实验室, 安徽 合肥 230037

联系人作者:谢晨波(cbxie@aiofm.ac.cn)

【1】Anderson T L, Charlson R J, Schwartz S E, et al. Climate forcing by aerosols-a hazy picture [J]. Science. 2003, 300(5622): 1103-1104.Anderson T L, Charlson R J, Schwartz S E, et al. Climate forcing by aerosols-a hazy picture [J]. Science. 2003, 300(5622): 1103-1104.

【2】Zhang Z J. Study on characteristics of aerosol optical property and spatio-temporal distribution based on multi-source datasets [D]. Lanzhou: Lanzhou University. 2019, 11-16.
张芝娟. 基于多源数据的气溶胶光学特性及时空分布特征的研究 [D]. 兰州: 兰州大学. 2019, 11-16.

【3】Burkhardt U, K?rcher B, Schumann U. Global modeling of the contrail and contrail cirrus climate impact [J]. Bulletin of the American Meteorological Society. 2010, 91(4): 479-484.Burkhardt U, K?rcher B, Schumann U. Global modeling of the contrail and contrail cirrus climate impact [J]. Bulletin of the American Meteorological Society. 2010, 91(4): 479-484.

【4】Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: from air pollution to climate change [M]. Hoboken, New Jersey: John Wiley & Sons. 2006, 15-27.

【5】P?schl U. Atmospheric aerosols: composition, transformation, climate and health effects [J]. Angewandte Chemie International Edition. 2005, 44(46): 7520-7540.

【6】Liu Y, Wang M X, Zhang R J. The present status of aerosol research in China [J]. Climatic and Environmental Research. 1999, 4(4): 406-414.
刘毅, 王明星, 张仁健. 中国气溶胶研究进展 [J]. 气候与环境研究. 1999, 4(4): 406-414.

【7】Su Q X, Li J, Chen M Y. A review of atmospheric aerosol satellite remote sensing inversion research [J]. Science and Technology Innovation Herald. 2019, 16(36): 108-112, 114.
苏倩欣, 李婧, 陈敏瑜. 大气气溶胶卫星遥感反演研究综述 [J]. 科技创新导报. 2019, 16(36): 108-112, 114.

【8】He X, Zhou R, Yao Y, et al. The spatiotemporal variations of aerosol types in representative sites of China basing on the Aerosol Robotic Network(AERONET) [J]. China Environmental Science. 2020, 40(2): 485-496.
贺欣, 周茹, 姚媛, 等. 基于AERONET的中国地区典型站点气溶胶类型变化特征 [J]. 中国环境科学. 2020, 40(2): 485-496.
He X, Zhou R, Yao Y, et al. The spatiotemporal variations of aerosol types in representative sites of China basing on the Aerosol Robotic Network(AERONET) [J]. China Environmental Science. 2020, 40(2): 485-496.
贺欣, 周茹, 姚媛, 等. 基于AERONET的中国地区典型站点气溶胶类型变化特征 [J]. 中国环境科学. 2020, 40(2): 485-496.

【9】Sun Y L, Zhuang G S, Tang A H, et al. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing [J]. Environmental Science & Technology. 2006, 40(10): 3148-3155.

【10】Kang C M, Lee H S, Kang B W, et al. Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea [J]. Atmospheric Environment. 2004, 38(28): 4749-4760.

【11】Yang J, Niu Z Q, Shi C E, et al. Microphysics of atmospheric aerosols during winter haze/fog events in Nanjing [J]. Environmental Science. 2010, 31(7): 1425-1431.
杨军, 牛忠清, 石春娥, 等. 南京冬季雾霾过程中气溶胶粒子的微物理特征 [J]. 环境科学. 2010, 31(7): 1425-1431.

【12】Yang Y J. Yim S H L, Haywood J, et al. Characteristics of heavy particulate matter pollution events over Hong Kong and their relationships with vertical wind profiles using high-time-resolution Doppler lidar measurements [J]. Journal of Geophysical Research: Atmospheres. 2019, 124(16): 9609-9623.

【13】Liu D, Tao Z M, Wu D C, et al. Development of three-wavelength-Raman-polarization lidar system and case study [J]. Acta Optica Sinica. 2013, 33(2): 0228001.
刘东, 陶宗明, 吴德成, 等. 三波长拉曼偏振激光雷达系统研制及探测个例 [J]. 光学学报. 2013, 33(2): 0228001.

【14】Bo G Y, Liu D, Wu D C, et al. Two-wavelength lidar for observation of aerosol optical and hygroscopic properties in fog and haze days [J]. Chinese Journal of Lasers. 2014, 41(1): 0113001.
伯广宇, 刘东, 吴德成, 等. 双波长激光雷达探测典型雾霾气溶胶的光学和吸湿性质 [J]. 中国激光. 2014, 41(1): 0113001.

【15】Wang Y F, Cao X M, Zhang J, et al. Detection and analysis of all-day atmospheric water vapor Raman lidar based on wavelet denoising algorithm [J]. Acta Optica Sinica. 2018, 38(2): 0201001.
王玉峰, 曹小明, 张晶, 等. 基于小波去噪算法的全天时大气水汽拉曼激光雷达探测与分析 [J]. 光学学报. 2018, 38(2): 0201001.

【16】Luo H H, Chen Z Y, Zhang T S, et al. Comparison of aerosol vertical distribution based on CALIPSO satellite and ground observation data [J]. Chinese Journal of Lasers. 2019, 46(12): 1201003.
罗卉卉, 陈臻懿, 张天舒, 等. 基于CALIPSO卫星和地面观测资料的气溶胶垂直分布对比 [J]. 中国激光. 2019, 46(12): 1201003.

【17】Chen X L, Jin L J. Vertical distribution characteristics of aerosols in different weathers based on CALIPSO satellite [J]. Laser & Optoelectronics Progress. 2018, 55(2): 020101.
陈晓磊, 金莲姬. 基于CALIPSO卫星的不同天气类型下气溶胶垂直分布特征对比研究 [J]. 激光与光电子学进展. 2018, 55(2): 020101.

【18】Xu C P, Ge J M, Huang J P, et al. Observations of dust aerosol over China based on CALIPSO spaceborne lidar [J]. Journal of Desert Research. 2014, 34(5): 1353-1362.
徐成鹏, 葛觐铭, 黄建平, 等. 基于CALIPSO星载激光雷达的中国沙尘气溶胶观测 [J]. 中国沙漠. 2014, 34(5): 1353-1362.

【19】Fu S L, Xie C B, Zhuang P, et al. Study of persistent foggy-hazy composite pollution in winter over Huainan through ground-based and satellite measurements [J]. Atmosphere. 2019, 10(11): 656.

【20】Wu D, Wang Z, Wang B, et al. CALIPSO validation using ground-based lidar in Hefei (31.9°N, 117.2°E), China [J]. Applied Physics B. 2011, 102(1): 185-195.

【21】Zhang H, Tao Z M, Ma X M, et al. Fitting of hygroscopic factor between PM2.5 mass concentration and aerosol backscattering coefficient in Hefei area [J]. Chinese Journal of Lasers. 2018, 45(7): 0704006.
张辉, 陶宗明, 麻晓敏, 等. 合肥地区PM2.5质量浓度与气溶胶后向散射系数之间吸湿因子的拟合 [J]. 中国激光. 2018, 45(7): 0704006.

【22】He W Y, Ling C, Chen H B, et al. Comparison of stratospheric aerosol derived from ground LiDAR and SAGE in Hefei [J]. Journal of Remote Sensing. 2016, 20(4): 540-548.
何文英, 凌超, 陈洪滨, 等. 合肥地区平流层气溶胶地基激光雷达与SAGE卫星探测比较 [J]. 遥感学报. 2016, 20(4): 540-548.

【23】Fang X, Wang M, Hu S X. Distribution characteristics of atmospheric pollutions in Meiyu season observed by lidar over Hefei [J]. Chinese Journal of Lasers. 2019, 46(1): 0110003.
方欣, 王敏, 胡顺星. 合肥梅雨季节大气污染物分布特征的激光雷达探测 [J]. 中国激光. 2019, 46(1): 0110003.

【24】Fernald F G. Analysis of atmospheric lidar observations: some comments [J]. Applied Optics. 1984, 23(5): 652-653.

【25】Tan M, Xie C B, Wang B X, et al. Correlation study on boundary layer height and particulate matter concentration at Beijing in winter 2014 [J]. Infrared and Laser Engineering. 2018, 47(7): 0717007.
谭敏, 谢晨波, 王邦新, 等. 北京2014年冬季边界层高度与颗粒物浓度的相关性研究 [J]. 红外与激光工程. 2018, 47(7): 0717007.

【26】Zhang X L. Linear depolarization ratios characteristics of dust aerosol particles model [J]. Acta Optica Sinica. 2016, 36(8): 0829001.
张小林. 沙尘气溶胶粒子模型的线退偏比特性 [J]. 光学学报. 2016, 36(8): 0829001.

【27】Tao Z M, Liu D, Zhong Z Q, et al. Measurements of cirrus clouds with a three-wavelength lidar [J]. Chinese Optics Letters. 2012, 10(5): 050101.

【28】Mao F Y, Gong W, Li J. Geometrical form factor calculation using Monte Carlo integration for lidar [J]. Optics & Laser Technology. 2012, 44(4): 907-912.

引用该论文

Yang Hao,Xie Chenbo,Fang Zhiyuan,Wang Bangxin,Xing Kunming,Cao Ye. Joint Observations of Vertical Distribution of Aerosols in Hefei Area by Spaceborne and Ground-Based Lidars[J]. Chinese Journal of Lasers, 2021, 48(1): 0110001

杨昊,谢晨波,方志远,王邦新,邢昆明,曹也. 星-地激光雷达联合观测合肥地区的气溶胶垂直分布[J]. 中国激光, 2021, 48(1): 0110001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF