首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:152801--1)

基于DeepLab-v3+的遥感影像分类

Remote Sensing Image Classification Based on DeepLab-v3+

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

遥感影像分类是模式识别技术在遥感领域的具体应用,针对普通卷积神经网络处理遥感图像分类遇到的边缘分类不准确、分类精度低等问题,提出了一种基于编码解码器的空洞卷积模型(DeepLab-v3+)的遥感图像分类方法。首先标注卫星图像数据;再利用标注数据集对DeepLab-v3+模型进行训练,该模型能够提取遥感图像中具有较强稳健性的边缘特征;最后获得遥感影像地物分类结果。在遥感数据集上进行分析可知,所提方法比其他分类方法具有更高的分类精度,更稳健的边缘特征,以及更优的分类效果。

Abstract

Remote sensing image classification is a specific application of the pattern recognition technology in the remote sensing field. This study proposes an atrous convolution model based on encoder-decoder (DeepLab-v3+) for performing remote sensing image classification with respect to the inaccurate edge classification and low classification accuracy problems encountered while processing remote sensing image classification using ordinary convolutional neural networks. First, the satellite image data are marked, and the DeepLab-v3+ model is trained using a calibration dataset. This model can extract edge features exhibiting considerable robustness from the remote sensing image. Finally, the classification results of the remote sensing image is obtained. When compared with other classification methods, the proposed method achieves higher classification accuracy, more robust edge features, and better classification results when applied on a remote sensing dataset.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.152801

所属栏目:遥感与传感器

收稿日期:2018-12-01

修改稿日期:2019-03-06

网络出版日期:2019-08-01

作者单位    点击查看

袁立:北京科技大学自动化学院, 北京 100083
袁吉收:北京科技大学自动化学院, 北京 100083
张德政:北京科技大学计算机与通信工程学院, 北京 100083

联系人作者:袁吉收(jishou_yuan@163.com)

【1】Li S H, Wang J L, Bi Y et al. A review of methods for classification of remote sensing images. Remote Sensing for Land & Resources. 17(2), 1-6(2005).
李石华, 王金亮, 毕艳 等. 遥感图像分类方法研究综述. 国土资源遥感. 17(2), 1-6(2005).

【2】Shan B H, Huo X Y and Liu Y. A stereovision measurement method using epipolar constraint to correct digital image correlation matching. Chinese Journal of Lasers. 44(8), (2017).
单宝华, 霍晓洋, 刘洋. 一种极线约束修正数字图像相关匹配的立体视觉测量方法. 中国激光. 44(8), (2017).

【3】Zhao F Z, Liang H Y, Wu X L et al. Active contour segmentation model based on local and global Gaussian fitting. Laser & Optoelectronics Progress. 54(5), (2017).
赵方珍, 梁海英, 巫湘林 等. 基于局部和全局高斯拟合的主动轮廓分割模型. 激光与光电子学进展. 54(5), (2017).

【4】Song Y, Wu Y Q and Bi S B. Satellite remote sensing cloud image segmentation using edge corrected CV model. Acta Optica Sinica. 34(9), (2014).
宋昱, 吴一全, 毕硕本. 边缘修正CV模型的卫星遥感云图分割方法. 光学学报. 34(9), (2014).

【5】Cheriyadat A M. Unsupervised feature learning for aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing. 52(1), 439-451(2014).

【6】Liu D W, Han L and Han X Y. High spatial resolution remote sensing image classification based on deep learning. Acta Optica Sinica. 36(4), (2016).
刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究. 光学学报. 36(4), (2016).

【7】Alberga V. A study of land cover classification using polarimetric SAR parameters. International Journal of Remote Sensing. 28(17), 3851-3870(2007).

【8】Hagner O and Reese H. A method for calibrated maximum likelihood classification of forest types. Remote Sensing of Environment. 110(4), 438-444(2007).

【9】Niu X and Ban Y F. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. International Journal of Remote Sensing. 34(1), 1-26(2013).

【10】Heermann P D and Khazenie N. Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Transactions on Geoscience and Remote Sensing. 30(1), 81-88(1992).

【11】Pal M and Mather P M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment. 86(4), 554-565(2003).

【12】Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning. 2(1), 1-127(2009).

【13】Du P J, Xia J S, Xue Z H et al. Review of hyperspectral remote sensing image classification. Journal of Remote Sensing. 20(2), 236-256(2016).
杜培军, 夏俊士, 薛朝辉 等. 高光谱遥感影像分类研究进展. 遥感学报. 20(2), 236-256(2016).

【14】Shelhamer E, Long J and Darrell T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 39(4), 640-651(2017).

【15】Ronneberger O, Fischer P and Brox T. U-Net: convolutional networks for biomedical image segmentation. ∥Navab N, Hornegger J, Wells W, et al. Medical image computing and computer-assisted intervention. Lecture notes in computer science. Cham: Springer. 9351, 234-241(2015).

【16】Chen L C, George P, Iasonas K, fully connected CRFs[J/OL] et al. -06-07)[2018-12-01]. https:∥arxiv. org/abs/1412, (2016).

【17】Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40(4), 834-848(2018).

【18】Chen L C, Papandreou G, Schroff F et al. -12-05)[2018-12-01]. https:∥arxiv. org/abs/1706, (2017).

【19】Badrinarayanan V, Kendall A and Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 39(12), 2481-2495(2017).

【20】Chen L C, Zhu Y K, Papandreou G et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer. 11211, 833-851(2018).

【21】Grauman K and Darrell T. The Pyramid match kernel: discriminative classification with sets of image features. [C]∥Tenth IEEE International Conference on Computer Vision (ICCV''05), October 17-21, 2005, Beijing, China. New York: IEEE. 8824338, (2005).

【22】Lazebnik S, Schmid C and Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. CVPR''06), June 17-22, 2006, New York, NY, USA. New York: IEEE. (2006).

【23】He K M, Zhang X Y, Ren S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ∥Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science. Cham: Springer. 8691, 346-361(2014).

【24】Ge W Y and Liu G Y. Unsupervised classification of high-resolution remote-sensing images under edge constraints. Proceedings of SPIE. 10609, (2017).

引用该论文

Yuan Li,Yuan Jishou,Zhang Dezheng. Remote Sensing Image Classification Based on DeepLab-v3+[J]. Laser & Optoelectronics Progress, 2019, 56(15): 152801

袁立,袁吉收,张德政. 基于DeepLab-v3+的遥感影像分类[J]. 激光与光电子学进展, 2019, 56(15): 152801

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF