首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1003003--1)

双面神亲/疏水锌箔制备及其气泡运输特性

Preparation of Janus Zinc Foil and Its Bubble Transport Characteristic

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

双面神亲/疏膜可用于实现水下气泡的单向运输,在学术研究和工业应用中具有重要的意义。利用纳秒脉冲激光打孔,并结合加热改性工艺,在锌箔上下表面制备出锥形微孔阵列。通过控制激光加工参数,研制出双面神锌箔,其上下表面具有不同的粗糙度和微观结构,并开展了水下气泡单向运动特性研究。通过能谱仪(EDS)对双面神锌箔表面的化学成分进行了分析,结果表明,锌箔上表面的润湿性变化主要归因于激光打孔和加热处理中亲水性羟基的吸附和解吸作用。利用高清工业相机观测水下气泡的动态行为,发现气泡可以在0.6 s内从疏气面渗透到亲气面,但在相反方向则会被堵塞。研究结果显示,在一定范围内,脉冲激光能量的增加不仅可以增大锌箔表面的微孔尺寸并改善锌箔表面疏水性,还可以显著提高气泡的运输速率,气泡在双面神锌箔中的运输特性主要归因于表面微纳结构和化学成分的共同作用。研究结论可为超高速气泡捕捉、输送、收集和气液分离等领域的先进材料设计提供参考。

Abstract

Janus membranes can realize the unidirectional transport of underwater bubbles, which is of great significance to academic research and industrial applications. In this paper, the conical microporous arrays on the upper and lower surfaces of zinc foils are prepared by nanosecond pulsed laser drilling combined with heating treatment. Additionally, the Janus zinc foils, which have the upper and lower surfaces with different roughness and microstructures, are developed through the control of laser processing parameters. Then, the unidirectional transport of underwater bubbles is studied on the prepared foils and the chemical composition of the zinc foil surface is analyzed by an energy dispersive spectrometer (EDS). The results show that the change in the wettability of the zinc foil surface is mainly attributed to the adsorption and desorption of hydrophilic hydroxyl during laser drilling and heating treatment. Observing the dynamic behavior of underwater bubbles by a high-definition industrial camera, we find that the bubbles can penetrate from the aerophobic surface to the aerophilic surface within 0.6 s, but will be blocked in the opposite direction. In addition, the increase in the pulsed laser energy within a certain range can not only increase the micropore size and the hydrophobicity of the zinc foil surface but also significantly raise the transport rate of bubbles. The transport characteristics of bubbles on the Janus zinc foils are mainly attributed to the co-action of surface micro-nano structures and chemical compositions. In a word, this study can provide a new perspective for the design of advanced materials in the fields of ultra-high-speed bubble capture, transport, collection, and gas-liquid separation.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TG665

DOI:10.3788/CJL202047.1003003

所属栏目:材料与薄膜

基金项目:江苏省自然科学基金面上项目、 中央高校基本科研业务费专项资金资助、安徽省高校优秀青年骨干人才国内外访学研修项目、合肥工业大学测量理论与精密仪器安徽省重点实验室横向项目;

收稿日期:2020-04-03

修改稿日期:2020-06-03

网络出版日期:2020-10-01

作者单位    点击查看

肖轶:南通职业大学机械工程学院, 江苏 南通 226007
孟东:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
徐呈艺:南通职业大学机械工程学院, 江苏 南通 226007
张瑞华:南通职业大学机械工程学院, 江苏 南通 226007
姚燕生:安徽建筑大学机械与电气工程学院, 安徽 合肥 230601
吴思竹:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
姚成立:合肥师范学院化学与化学工程学院, 安徽 合肥 230601

联系人作者:吴思竹(sizhuwu@hfut.edu.cn); 姚成立(sizhuwu@hfut.edu.cn);

备注:江苏省自然科学基金面上项目、 中央高校基本科研业务费专项资金资助、安徽省高校优秀青年骨干人才国内外访学研修项目、合肥工业大学测量理论与精密仪器安徽省重点实验室横向项目;

【1】Abd-ur-Rehman H M, Al-Sulaiman F A. An experimental investigation of a novel design air humidifier using direct solar thermal heating [J]. Energy Conversion and Management. 2016, 127: 667-678.Abd-ur-Rehman H M, Al-Sulaiman F A. An experimental investigation of a novel design air humidifier using direct solar thermal heating [J]. Energy Conversion and Management. 2016, 127: 667-678.

【2】von Gunten U. Ozonation of drinking water: part I. oxidation kinetics and product formation [J]. Water Research. 2003, 37(7): 1443-1467.von Gunten U. Ozonation of drinking water: part I. oxidation kinetics and product formation [J]. Water Research. 2003, 37(7): 1443-1467.

【3】Donne S W, Evans G M. Hydrogen bubble flotation of silica [J]. Advanced Powder Technology. 2010, 21(4): 412-418.

【4】Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production: a compendium [J]. Corrosion. 2003, 59(8): 659-683.Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production: a compendium [J]. Corrosion. 2003, 59(8): 659-683.

【5】Gylys J, Zdankus T, Gylys M. Experimental investigation of heat transfer from inclined flat surface to aqueous foam [J]. International Journal of Heat and Mass Transfer. 2014, 69: 230-236.

【6】De Temmerman L, Maere T, Temmink H, et al. The effect of fine bubble aeration intensity on membrane bioreactor sludge characteristics and fouling [J]. Water Research. 2015, 76: 99-109.

【7】Ju J, Bai H, Zheng Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus [J]. Nature Communications. 2012, 3(1): 1247.

【8】Zhao Y, Wang H X, Zhou H, et al. Directional fluid transport in thin porous materials and its functional applications [J]. Small. 2017, 13(4): 1601070.

【9】Yang H C, Xie Y S, Hou J W, et al. Janus membranes: creating asymmetry for energy efficiency [J]. Advanced Materials. 2018, 30(43): 1801495.

【10】Chen J W, Liu Y M, Guo D W, et al. Under-water unidirectional air penetration via a Janus mesh [J]. Chemical Communications. 2015, 51(59): 11872-11875.

【11】Yong J L, Chen F, Huo J L, et al. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas [J]. Nanoscale. 2017, 10(8): 3688-3696.

【12】Pei C T, Peng Y, Zhang Y, et al. An integrated Janus mesh: underwater bubble antibuoyancy unidirectional penetration [J]. ACS Nano. 2018, 12(6): 5489-5494.

【13】Bodas D, Khan-Malek C. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment: an SEM investigation [J]. Sensors and Actuators B: Chemical. 2007, 123(1): 368-373.

【14】da Silva B, Zhang M X, Schelcher G, et al. Study of the stability and hydrophilicity of plasma-modified microfluidic materials [J]. Plasma Processes and Polymers. 2017, 14(3): 1600034.

【15】Ngo C, Chun D. Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on laser-ablated metallic surfaces [J]. Advanced Engineering Materials. 2018, 20(7): 1701086.

【16】Yang Q B, Liu S J, Wang Y T, et al. Super-hydrophobic micro-nano structures on aluminum surface induced by nanosecond laser [J]. Laser & Optoelectronics Progress. 2017, 54(9): 091406.
杨奇彪, 刘少军, 汪于涛, 等. 纳秒激光诱导铝板表面超疏水微纳结构 [J]. 激光与光电子学进展. 2017, 54(9): 091406.

【17】Liu C H, Zhu X J, Li X M, et al. Wettability of nanosecond laser-induced titanium oxide alloys and coatings [J]. Laser & Optoelectronics Progress. 2019, 57(1): 011408.
刘晨华, 祝锡晶, 黎相孟, 等. 纳秒激光诱导氧化钛片及涂层的润湿性研究 [J]. 激光与光电子学进展. 2019, 57(1): 011408.

【18】Ye Y X, Liu Y F, Du T T, et al. Experimental study on gradient wettable surface fabricated by laser rapid processing [J]. Chinese Journal of Lasers. 2019, 46(10): 1002001.
叶云霞, 刘远方, 杜婷婷, 等. 激光快速加工梯度润湿性表面的实验研究 [J]. 中国激光. 2019, 46(10): 1002001.

【19】Zhou P Y, Peng Y Z, Huang Z M, et al. Fabrication and droplet impact performance of superhydrophobic surfaces developed using nanosecond lasers [J]. Chinese Journal of Lasers. 2020, 47(4): 0402012.
周培阳, 彭耀政, 黄泽铭, 等. 纳秒激光制备的超疏水表面及其液滴冲击性能 [J]. 中国激光. 2020, 47(4): 0402012.

【20】Khranovskyy V, Ekblad T, Yakimova R, et al. Surface morphology effects on the light-controlled wettability of ZnO nanostructures [J]. Applied Surface Science. 2012, 258(20): 8146-8152.

【21】Liu D, Wu Y G, Hu Y T, et al. Fabrication of super-hydrophobic aluminum surface by picosecond laser [J]. Laser & Optoelectronics Progress. 2016, 53(10): 101408.
刘顿, 伍义刚, 胡勇涛, 等. 皮秒激光制备铝基超疏水表面 [J]. 激光与光电子学进展. 2016, 53(10): 101408.

【22】Pan H H, Wang Z, Fan W Z, et al. Superhydrophobic titanium surface micro/nanostructures induced by femtosecond laser [J]. Chinese Journal of Lasers. 2016, 43(8): 0802002.
泮怀海, 王卓, 范文中, 等. 飞秒激光诱导超疏水钛表面微纳结构 [J]. 中国激光. 2016, 43(8): 0802002.

【23】Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Transactions of the Faraday Society. 1944, 40: 546-551.

【24】Chen C, Shi L, Huang Z C, et al. Microhole-arrayed PDMS with controllable wettability gradient by one-step femtosecond laser drilling for ultrafast underwater bubble unidirectional self-transport [J]. Advanced Materials Interfaces. 2019, 6(12): 1900297.

【25】Takeda S, Fukawa M, Hayashi Y, et al. Surface OH group governing adsorption properties of metal oxide films [J]. Thin Solid Films. 1999, 339(1/2): 220-224.

【26】Hu H, Ji H F, Sun Y. The effect of oxygen vacancies on water wettability of a ZnO surface [J]. Physical Chemistry Chemical Physics. 2013, 15(39): 16557-16565.

【27】Ma X Y, Cao M Y, Teng C, et al. Bio-inspired humidity responsive switch for directional water droplet delivery [J]. Journal of Materials Chemistry. 2015, 3(30): 15540-15545.

【28】Zhang C H, Zhang B, Ma H Y, et al. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment [J]. ACS Nano. 2018, 12(2): 2048-2055.

引用该论文

Xiao Yi,Meng Dong,Xu Chengyi,Zhang Ruihua,Yao Yansheng,Wu Sizhu,Yao Chengli. Preparation of Janus Zinc Foil and Its Bubble Transport Characteristic[J]. Chinese Journal of Lasers, 2020, 47(10): 1003003

肖轶,孟东,徐呈艺,张瑞华,姚燕生,吴思竹,姚成立. 双面神亲/疏水锌箔制备及其气泡运输特性[J]. 中国激光, 2020, 47(10): 1003003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF