首页 > 论文 > Photonics Research > 8卷 > 10期(pp:1573-1579)

Strong optical force of a molecule enabled by the plasmonic nanogap hot spot in a tip-enhanced Raman spectroscopy system

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Tip-enhanced Raman spectroscopy (TERS) offers a powerful means to enhance the Raman scattering signal of a molecule as the localized surface plasmonic resonance will induce a significant local electric field enhancement in the nanoscale hot spot located within the nanogap of the TERS system. In this work, we theoretically show that this nanoscale hot spot can also serve as powerful optical tweezers to tightly trap a molecule. We calculate and analyze the local electric field and field gradient distribution of this nanogap plasmon hot spot. Due to the highly localized electric field, a three-dimensional optical trap can form at the hot spot. Moreover, the optical energy density and optical force acting on a molecule can be greatly enhanced to a level far exceeding the conventional single laser beam optical tweezers. Calculations show that for a single H2TBPP organic molecule, which is modeled as a spherical molecule with a radius of rm=1 nm, a dielectric coefficient ε=3, and a polarizability α=4.5×10-38 C·m2/V, the stiffness of the hot-spot trap can reach a high value of about 2 pN/[(W/cm2)·m] and 40 pN/[(W/cm2)·m] in the direction perpendicular and parallel to the TERS tip axis, which is far larger than the stiffness of single-beam tweezers, 0.4 pN/[(W/cm2)·m]. This hard-stiffness will enable the molecules to be stably captured in the plasmon hot spot. Our results indicate that TERS can become a promising tool of optical tweezers for trapping a microscopic object like molecules while implementing Raman spectroscopic imaging and analysis at the same time.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.398243

所属栏目:Surface Optics and Plasmonics

基金项目:National Natural Science Foundation of China10.13039/501100001809; Guangdong Innovative and Entrepreneurial Research Team Program; National Key Research and Development Program of China10.13039/501100012166; Science and Technology Planning Project of Guangdong Province10.13039/501100012245;

收稿日期:2020-05-21

录用日期:2020-07-26

网络出版日期:2020-07-27

作者单位    点击查看

Li Long:School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
Jianfeng Chen:School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
Huakang Yu:School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
Zhi-Yuan Li:School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China

联系人作者:Zhi-Yuan Li(phzyli@scut.edu.cn)

备注:National Natural Science Foundation of China10.13039/501100001809; Guangdong Innovative and Entrepreneurial Research Team Program; National Key Research and Development Program of China10.13039/501100012166; Science and Technology Planning Project of Guangdong Province10.13039/501100012245;

【1】A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288-290(1986).

【2】M. L. Juan, M. Righini and R. Quidant. Plasmon nano-optical tweezers. Nat. Photonics. 5, 349-356(2011).

【3】D. G. GrierD. G. Grier. A revolution in optical manipulation. Nature. 424, 810-816(2003).

【4】V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett and K. Dholakia. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature. 419, 145-147(2002).

【5】L. Jing and L. Zhiyuan. Controlled mechanical motions of microparticles in optical tweezers. Micromachines. 9, (2018).

【6】H. L. Guo and Z. Y. Li. Optical tweezers technique and its applications. Sci. China Phys. Mech. Astron. 56, 2351-2360(2013).

【7】A. AshkinA. Ashkin. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Electron. 6, 841-856(2000).

【8】M. Born and E. Wolf. Principles of Optics. : Pergamon, (1975).

【9】D. G. GrierD. G. Grier. A revolution in optical manipulation. Nature. 424, 810-816(2003).

【10】F. Svedberg, Z. Li, H. Xu and M. K?ll. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett. 6, 2639-2641(2006).

【11】S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera and D. Petrov. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl. Phys. Lett. 96, (2010).

【12】G. Volpe, R. Quidant, G. Badenes and D. Petrov. Surface plasmon radiation forces. Phys. Rev. Lett. 96, (2006).

【13】M. Righini, A. S. Zelenina, C. Girard and R. Quidant. Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys. 3, 477-480(2007).

【14】M. Righini, G. Volpe, C. Girard, D. Petrov and R. Quidant. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 100, (2008).

【15】R. Quidant and C. Girard. Surface-plasmon-based optical manipulation. Laser Photonics Rev. 2, 47-57(2008).

【16】K. Wang, E. Schonbrun and K. B. Crozier. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. Nano Lett. 9, 2623-2629(2009).

【17】W. Zhang, L. Huang, C. Santschi and O. J. F. Martin. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 10, 1006-1011(2010).

【18】M. L. Juan, M. Righini and R. Quidant. Plasmon nano-optical tweezers. Nat. Photonics. 5, 349-356(2011).

【19】B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang and K. C. Toussaint. Application of plasmonic Bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett. 12, 796-801(2012).

【20】C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei and X. Yuan. Focused plasmonic trapping of metallic particles. Nat. Commun. 4, (2013).

【21】Z. Y. LiZ. Y. Li. Mesoscopic and microscopic strategies for engineering plasmon-enhanced Raman scattering. Adv. Opt. Mater. 6, (2018).

【22】J. F. Li, J. Liu, X. M. Tian and Z. Y. Li. Plasmonic particles with unique optical interaction and mechanical motion properties. Part. Part. Syst. Charact. 34, (2017).

【23】C. Zhang, B. Q. Chen and Z. Y. Li. Optical origin of subnanometer resolution in tip-enhanced raman mapping. J. Phys. Chem. C. 119, 11858-11871(2015).

【24】R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang and J. G. Hou. Sub-nm chemical mapping of a single molecule by plasmon enhanced Raman scattering. Nature. 498, 82-86(2013).

【25】L. Joonhee, K. T. Crampton, N. Tallarida and V. A. Apkarian. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature. 568, 78-82(2019).

【26】P. B. Johnson and R. W. Christy. Optical constants of the noble metals. Phys. Rev. B. 6, 4370-4379(1972).

【27】J. P. Barton, D. R. Alexander and S. A. Schaub. Internal and near‐surface electromagnetic fields for a spherical particle irradiated by a focused laser beam. J. Appl. Phys. 64, 1632-1639(1988).

【28】J. P. Barton, D. R. Alexander and S. A. Schaub. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys. 66, 4594-4602(1989).

【29】Y. Harada and T. Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 124, 529-541(1996).

【30】J. P. GordonJ. P. Gordon. Radiation forces and momenta in dielectric media. Phys. Rev. A. 8, 14-21(1973).

引用该论文

Li Long, Jianfeng Chen, Huakang Yu, and Zhi-Yuan Li, "Strong optical force of a molecule enabled by the plasmonic nanogap hot spot in a tip-enhanced Raman spectroscopy system," Photonics Research 8(10), 1573-1579 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF