首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1005002--1)

啁啾体布拉格光栅的脉冲响应特性

Impulse Response Characteristics of Chirped Volume Bragg Gratings

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于矩阵法,构建超短脉冲经啁啾体布拉格光栅(CVBG)衍射的频域和时域响应分析模型。针对百飞秒(fs)级光纤啁啾脉冲放大(FCPA)系统对于CVBG的带宽要求,系统研究衍射带宽对CVBG的脉冲展宽及压缩效应的影响及宽带CVBG对于不同啁啾参数输入脉冲的脉冲响应特性。研究结果表明:CVBG的衍射带宽随其啁啾率和厚度增大而线性增大;当CVBG的衍射带宽小于入射脉冲的频谱宽度时,频谱成分的剪切会导致展宽脉冲的变形并使压缩脉冲相对于入射脉冲而展宽;为实现100 fs脉冲的展宽-压缩对易性,须保证CVBG衍射带宽不小于60 nm。设计中对单块厚度为40 mm的宽带CVBG先展宽再压缩,得到频谱宽度为16.64 nm的线性啁啾脉冲,输出脉冲均无限接近傅里叶变换受限(FTL)脉冲且衍射效率高达84%,这为百fs级CVBG脉冲压缩器的实现提供了理论参考及指导。

Abstract

In this work, the frequency domain and time domain response analysis model of ultrashort pulses via chirped volume Bragg grating (CVBG) is constructed based on the matrix method. Aiming at the bandwidth requirement of CVBG for the hundred-femtosecond (fs) fiber chirped pulse amplification (FCPA) system, we systematically study the influence of the diffraction bandwidth on the pulse stretching and compression effect of CVBG and the impulse response characteristics of the broadband CVBG to incident pulse with different chirp parameters. The results show that the diffraction bandwidth of CVBG increases linearly with the increasing chirp rate and thickness. When the diffraction bandwidth of CVBG is smaller than that of the incident pulse, the shearing of the spectral components will cause distortion of the stretched pulse and broadening of the compressed pulse with respect to the incident pulse. To achieve stretching-compression reciprocity of the one-hundred-femtosecond pulse, it is necessary to ensure the diffraction bandwidth of CVBG no less than 60 nm. As designed, a broadband CVBG with 40 mm thickness is stretched first and then compressed, and linear chirp pulses with a spectral width of 16.64 nm are obtained. All of the output pulses are infinitely close to the Fourier transform constrained (FTL) pulse and the diffraction efficiency is as high as 84%, which provides a theoretical reference for the implementation of the fs CVBG pulse compressor.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/AOS201939.1005002

所属栏目:衍射与光栅

基金项目:国家自然科学基金、上海市科学技术委员会;

收稿日期:2019-05-15

修改稿日期:2019-06-25

网络出版日期:2019-10-01

作者单位    点击查看

戴慧芳:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049中国科学院强激光材料重点实验室, 上海 201800
陈鹏:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049中国科学院强激光材料重点实验室, 上海 201800
赵靖寅:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049中国科学院强激光材料重点实验室, 上海 201800
孙勇:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049中国科学院强激光材料重点实验室, 上海 201800
徐姣:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049中国科学院强激光材料重点实验室, 上海 201800
孔钒宇:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院强激光材料重点实验室, 上海 201800
晋云霞:中国科学院上海光学精密机械研究所薄膜光学实验室, 上海 201800中国科学院强激光材料重点实验室, 上海 201800

联系人作者:晋云霞(yxjin@siom.ac.cn)

备注:国家自然科学基金、上海市科学技术委员会;

【1】Huang H, Yang L M and Liu J. Micro-hole drilling and cutting using femtosecond fiber laser [J]. Optical Engineering. 2014, 53(5): 051513.

【2】R ser F, Eidam T, Rothhardt J et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system [J]. Optics Letters. 2007, 32(24): 3495-3497.

【3】Klenke A, H drich S, Eidam T et al. 22 GW peak-power fiber chirped-pulse-amplification system [J]. Optics Letters. 2014, 39(24): 6875-6878.

【4】Sun R Y, Tan F Z, Jin D C et al. 1 μm femtosecond fiber chirped pulse amplification system based on dispersion wave [J]. Chinese Journal of Lasers. 2018, 45(1): 0101001.
孙若愚, 谭方舟, 金东臣 等. 基于色散波的1 μm飞秒光纤啁啾脉冲放大系统 [J]. 中国激光. 2018, 45(1): 0101001.

【5】Hao J Y, Liu B W, Song H Y et al. Femtosecond fiber amplification system based on third-order dispersion compensation technique [J]. Laser & Optoelectronics Progress. 2018, 55(5): 051404.
郝静宇, 刘博文, 宋寰宇 等. 基于三阶色散补偿的光纤飞秒激光放大系统 [J]. 激光与光电子学进展. 2018, 55(5): 051404.

【6】Chen H, Guan H Y, Zeng L J et al. Fabrication of broadband, high-efficiency, metal-multilayer-dielectric gratings [J]. Optics Communications. 2014, 329: 103-108.

【7】Chen J M, Huang H P, Zhang Y B et al. Reducing electric-field-enhancement in metal-dielectric grating by designing grating with asymmetric ridge [J]. Scientific Reports. 2018, 8: 5228.

【8】Fedulova E, Fritsch K, Brons J et al. Highly-dispersive mirrors reach new levels of dispersion [J]. Optics Express. 2015, 23(11): 13788-13793.

【9】Chen Y, Wang Y Z, Wang L J et al. High dispersive mirrors for erbium-doped fiber chirped pulse amplification system [J]. Optics Express. 2016, 24(17): 19835-19840.

【10】Liu J, Wang Y Z, Zhao R R et al. Low vibration and high dispersion mirror pair in femtosecond pulsed Ti∶sapphire laser [J]. Chinese Journal of Lasers. 2018, 45(10): 1003001.
刘加, 王胭脂, 赵睿睿 等. 飞秒脉冲钛宝石激光器中的低振荡高色散镜对 [J]. 中国激光. 2018, 45(10): 1003001.

【11】Glebov L, Smirnov V, Rotari E et al. Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses [J]. Optical Engineering. 2014, 53(5): 051514.

【12】Rever M, Huang S H, Yahus C et al. 200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings . [C]∥Conference on Lasers and Electro-Optics 2009, May 31-June 5, 2009, Baltimore, Maryland, United States. Washington, D. C.: OSA. 2009, CMBB2:

【13】Sims R A, Kadwani P, Shah L et al. Chirped pulse amplification in Tm doped fiber using a chirped Bragg grating [J]. Proceedings of SPIE. 2013, 8601: 86012P.

【14】Sun R Y, Jin D C, Tan F Z et al. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating [J]. Optics Express. 2016, 24(20): 22806-22812.

【15】Bartulevicius T, Frankinas S, Michailovas A et al. Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile [J]. Optics Express. 2017, 25(17): 19856-19862.

【16】Kaim S, Mokhov S, Zeldovich B Y et al. Stretching and compressing of short laser pulses by chirped volume Bragg gratings: analytic and numerical modeling [J]. Optical Engineering. 2014, 53(5): 051509.

【17】Feng J S, Zhang X, Wu D S et al. Diffraction in chirped volume Bragg gratings [J]. Chinese Optics Letters. 2015, 13(s1): s10901.

【18】Yamada M and Sakuda K. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach [J]. Applied Optics. 1987, 26(16): 3474-3478.

【19】Kogelnik H. Coupled wave theory for thick hologram gratings [J]. The Bell System Technical Journal. 1969, 48(9): 2909-2947.

【20】Zhang Z G. Femtosecond laser technology[M]. Beijing: Science Press, 2011, 15-28.
张志刚. 飞秒激光技术[M]. 北京: 科学出版社, 2011, 15-28.

【21】Feng J S. Spectral responses and dispersion properties of chirped volume Bragg gratings [D]. Wuhan: Huazhong University of Science and Technology. 2011, 32-39.
封建胜. 啁啾体布拉格光栅的频谱响应与色散特性研究 [D]. 武汉: 华中科技大学. 2011, 32-39.

引用该论文

Dai Huifang,Chen Peng,Zhao Jingyin,Sun Yong,Xu Jiao,Kong Fanyu,Jin Yunxia. Impulse Response Characteristics of Chirped Volume Bragg Gratings[J]. Acta Optica Sinica, 2019, 39(10): 1005002

戴慧芳,陈鹏,赵靖寅,孙勇,徐姣,孔钒宇,晋云霞. 啁啾体布拉格光栅的脉冲响应特性[J]. 光学学报, 2019, 39(10): 1005002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF