Photonics Research, 2020, 8 (5): 05000745, Published Online: Apr. 26, 2020   

Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer Download: 625次

Author Affiliations
1 School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
2 Southwest Institute of Technical Physics, Chengdu 610041, China
Abstract
A multipoint interferometer (MI), uniformly distributed point-like pinholes in a circle, was proposed to measure the orbital angular momentum (OAM) of vortex beams [Phys. Rev. Lett.101, 100801 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.100801], which can be used for measuring OAM of light from astronomical sources. This is a simple and robust method; however, it is noted that this method is only available for low topological charge because the diffracted intensity patterns for vortex beams with higher OAM will repeat periodically. Here, we propose an improved multipoint interferometer (IMI) for measuring the OAM of an optical vortex with high topological charge. The structure of our IMI is almost the same as the MI, but the size of each pinhole is larger than a point in the MI. Such a small change enables each pinhole to get more phase information from the incident beams; accordingly, the IMI can distinguish any vortex beams with different OAM. We demonstrate its viability both theoretically and experimentally.

Qi Zhao, Miao Dong, Yihua Bai, Yuanjie Yang. Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer[J]. Photonics Research, 2020, 8(5): 05000745.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!