首页 > 论文 > 中国激光 > 48卷 > 1期(pp:111002--1)

曲体束腰型光声池的设计及性能分析

Design and Performance Analysis of Curved Body and Girdled Waist Photoacoustic Cells

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在基于光声光谱技术的痕量气体检测系统中,光声池是决定系统性能的关键部件。针对传统柱形光声池受限于形状优化参数的问题,本文提出并设计了一种母线为双曲线的曲体束腰型光声池方案,该方案创新性地引入了母线离心率参数,实现了三维立体优化。本文基于有限元分析方法,利用COMSOL软件构建模型,分析母线离心率为7.14的光声池结构,得到了该结构在热黏性损耗作用下的前八阶声学模态值以及可视化振型。仿真结果表明,所设计的光声池的品质因数高达83.3;对光声池进行形状优化,发现光声池谐振腔长度对谐振频率敏感,母线短半轴长对声压幅值敏感。通过调节母线离心率可以有效地调节谐振频率且不影响声压幅值。光声池的幅频响应特性表明,较小的离心率易激发多谐振峰,在离心率为5时,激发的第一、第二谐振峰较强,它们的品质因数分别为75.9和128.9。本研究表明,此类曲体束腰型光声池具有优良的性能及较高的可设计度,对新型光声检测技术具备多场景适应能力,具有重要的理论和工程应用价值。

Abstract

Objective In a trace gas detection system based on photoacoustic spectroscopy technology, the photoacoustic cell is a key performance component of the system. More and more high-performance photoacoustic cells have been designed, and many of them have a variety of specially-shaped photoacoustic cells. However, heterogeneous photoacoustic cells with high design properties represented by topology optimization often mean greater processing costs, while traditional photoacoustic cells are often limited by shape optimization parameters and low design freedom. Therefore, research on the photoacoustic cell must be thorough and in-depth. In this paper, a curved beam waist photoacoustic cell with a hyperbolic generatrix is proposed and designed. This scheme introduces innovative generatrix eccentricity parameter, realizes three-dimensional optimization, and effectively fills the gap between traditional photoacoustic cells and highly-designed specially-shaped photoacoustic cells.

Methods Based on the finite element method, we use COMSOL software to construct a two-dimensional model of a curved beam waist photoacoustic cell with a generatrix eccentricity of 7.14. To ensure the accuracy of the solution, this paper considers the influence of thermal viscosity loss on the simulation model. The first eight acoustic modal values of the structure and the visual mode shape are analyzed with respect to thermal viscosity loss. On this basis, the amplitude-frequency response curve of the photoacoustic cell was analyzed and the quality factor Q was calculated via Lorentz fitting, and the rationality of the microphone placement position was verified. To study the designability of the photoacoustic cell, we optimized the parameters of the photoacoustic cell. When eccentricity trended toward infinity, the effects of the length of the resonant cavity of the curved beam waist photoacoustic cell and the eccentricity of the generatrix on the resonance frequency and the sound pressure amplitude were analyzed in detail. To alleviate the design distress caused by too few parameters, generatrix eccentricity was introduced as the third optimization parameter, and its influences on the resonance frequency and sound pressure amplitude were analyzed in detail. Finally, further study of the influence of the variation of generatrix eccentricity on the resonance peak of the photoacoustic cell was analyzed.

Results and discusssions Simulation results show that the quality factor of the photoacoustic cell in the preliminary design is as high as 83.3, indicating that the photoacoustic cell is a high-quality photoacoustic cell. Analyzing the optimized photoacoustic cell parameters, it was found that the length of the resonant cavity is more sensitive to the resonant frequency, while the semiminor axis length of the generatrix is more sensitive to the sound pressure amplitude. Further analysis of the simulation results shows that when the semiminor axis length of the generatrix is large, it is very limited to adjust the sound pressure amplitude by changing the length of the resonant cavity, while adjusting the semiminor axis length of the generatrix hardly changes the resonance frequency. Therefore, only relying on these two parameters to optimize the design will be limiting and provide challenges meeting the design requirements of special photoacoustic cells. After the introduction of the generatrix eccentricity parameter, by changing and adjusting the generatrix eccentricity, the resonance frequency can be adjusted within a certain range without affecting the sound pressure amplitude. In the evolution graph of the frequency domain response curve with the eccentricity of the generatrix, it can be seen that two resonance peaks are excited when the eccentricity trends toward infinity, and four resonance peaks are excited when the eccentricity of the generatrix is five. Among the four resonance peaks with an eccentricity of 5, the first and second resonance peaks are stronger, and the quality factors reach 75.9 and 128.9, respectively.

Conclusions The quality factor Q of the designed photoacoustic cell is higher than 50, so this kind of curved beam waist photoacoustic cell can be designed with a higher quality factor, which can effectively improve the sensitivity of the trace gas detection system. After adding the optimized parameter of generatrix eccentricity, three-dimensional optimization was realized, which has a higher degree of designability than traditional cylindrical photoacoustic cells. The amplitude-frequency response characteristics of the photoacoustic cell show that a small eccentricity can excite multiple resonance peaks, and a resonance peak with a high quality factor can be obtained by adjusting the generatrix eccentricity. This shows that multi-peak resonance can be achieved by adjusting the eccentricity of the generatrix, so that the same photoacoustic cell has two or more effective working frequencies, which greatly improves the designability of the photoacoustic cell. This curved beam waist photoacoustic cell design has important theoretical and engineering application value for the multi-scene adaptability of novel photoacoustic trace gas detection technology.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/CJL202148.0111002

所属栏目:光谱学

基金项目:国家民委中青年英才计划(MZR20004)、湖北省科技支撑计划(2015BCE048)、中南民族大学中央高校基本科研业务费专项资金自科培育项目(CZP17026)

收稿日期:2020-07-07

修改稿日期:2020-08-31

网络出版日期:2021-01-01

作者单位    点击查看

李泽昊:智能无线通信湖北省重点实验室, 中南民族大学电子信息工程学院, 湖北 武汉 430074
杨春勇:智能无线通信湖北省重点实验室, 中南民族大学电子信息工程学院, 湖北 武汉 430074
唐梓豪:智能无线通信湖北省重点实验室, 中南民族大学电子信息工程学院, 湖北 武汉 430074
彭苗苗:智能无线通信湖北省重点实验室, 中南民族大学电子信息工程学院, 湖北 武汉 430074
倪文军:南洋理工大学电气电子工程学院, 新加坡 新加坡 639798
郭连波:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
侯金:智能无线通信湖北省重点实验室, 中南民族大学电子信息工程学院, 湖北 武汉 430074
陈少平:智能无线通信湖北省重点实验室, 中南民族大学电子信息工程学院, 湖北 武汉 430074

联系人作者:杨春勇(cyyang@mail.scuec.edu.cn)

【1】Bell A G. On the production, reproduction of sound by light. American Journal of Science[J]. 1880, 20(118): 305-324.

【2】Durry G. Balloon-borne near-infrared diode laser spectroscopy for in situ measurements of atmospheric CH4 and H2O [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2001, 57(9): 1855-1863.

【3】Webber M E. AacDonald T, Pushkarsky M B, et al. Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy [J]. Measurement Science and Technology. 2005, 16(8): 1547-1553.

【4】Chen K, Yuan S, Gong Z F, et al. High sensitive detection for SF6 decomposition component of H2S based on laser photoacoustic spectroscopy [J]. Chinese Journal of Lasers. 2018, 45(9): 0911012.
陈珂, 袁帅, 宫振峰, 等. 基于激光光声光谱超高灵敏度检测SF6分解组分H2S [J]. 中国激光. 2018, 45(9): 0911012.

【5】Menzel L, Kosterev A A, Curl R F, et al. Spectroscopic detection of biological NO with a quantum cascade laser [J]. Applied Physics B. 2001, 72(7): 859-863.

【6】Liu X, Zhang T, Zhang G, et al. Carbon monoxide detection based on photoacoustic spectroscopy [J]. Chinese Journal of Lasers. 2020, 47(1): 0111002.
刘新, 张婷, 张刚, 等. 基于光声光谱技术的CO气体探测 [J]. 中国激光. 2020, 47(1): 0111002.

【7】Zha S L, Ma H L, Zha C L, et al. Application of broadband photoacoustic spectroscopy in methane concentration detection [J]. Laser & Optoelectronics Progress. 2019, 56(4): 043001.
查申龙, 马宏亮, 查长礼, 等. 宽带光声光谱技术在甲烷浓度探测中的应用 [J]. 激光与光电子学进展. 2019, 56(4): 043001.

【8】Brand C, Winkler A, Hess P, et al. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4 [J]. Applied Optics. 1995, 34(18): 3257-3266.

【9】Schilt S, Thévenaz L, Niklès M, et al. Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2004, 60(14): 3259-3268.

【10】Th?ny A, Sigrist M W. New developments in CO2-laser photoacoustic monitoring of trace gases [J]. Infrared Physics & Technology. 1995, 36(2): 585-615.

【11】Yun Y X, Zhao X X, Chen W G, et al. Acetylene detection by laser resonant photoacoustic spectrometry [J]. High Voltage Engineering. 2009, 35(9): 2156-2162.
云玉新, 赵笑笑, 陈伟根, 等. 采用激光共振光声光谱技术检测乙炔气体 [J]. 高电压技术. 2009, 35(9): 2156-2162.

【12】Shi B X, Hu K. Design of Helmholtz resonant photoacoustic cell [J]. Journal of Zhejiang University. 1985, 19(2): 79-89.
施柏煊, 胡凯. 亥姆霍兹共振光声池的设计 [J]. 浙江大学学报. 1985, 19(2): 79-89.

【13】Zeninari V, Kapitanov V A, Courtois D, et al. Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection [J]. Infrared Physics & Technology. 1999, 40(1): 1-23.

【14】Guo H, Wang X B, Zuo D L, et al. Research of SF6 detection by means of differential photoacoustic spectroscopy with tunable CO2 laser [J]. Laser Technology. 2018, 42(5): 593-598.
郭红, 王新兵, 左都罗, 等. 基于可调谐CO2激光器的SF6差分光声检测研究 [J]. 激光技术. 2018, 42(5): 593-598.

【15】Zéninari V, Parvitte B, Courtois D, et al. Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor [J]. Infrared Physics & Technology. 2003, 44(4): 253-261.

【16】Baumann B, Kost B, Wolff M, et al. Numerical shape optimization of photoacoustic sample cells: first results . [C]//Proceedings of the European COMSOL Conference. Grenoble, France: [s.n.]. 2007, 1-6.

【17】Zhao Y D, Fang Y H, Li Y Y, et al. Theoretical research on quartz enhanced photoacoustic spectroscopy base on the resonance in an elliptical cavity [J]. Acta Physica Sinica. 2016, 65(19): 190701.
赵彦东, 方勇华, 李扬裕, 等. 基于椭圆腔共振的石英增强光声光谱理论研究 [J]. 物理学报. 2016, 65(19): 190701.

【18】Kost B, Baumann B, Germer M, et al. Numerical shape optimization of photoacoustic resonators [J]. Applied Physics B. 2011, 102(1): 87-93.

【19】Ulasevich A L, Gorelik A V, Kouzmouk A A, et al. A miniaturized prototype of resonant banana-shaped photoacoustic cell for gas sensing [J]. Infrared Physics & Technology. 2013, 60: 174-182.

【20】Ulasevich A L, Gorelik A V, Kouzmouk A A, et al. A compact resonant Π-shaped photoacoustic cell with low window background for gas sensing [J]. Applied Physics B. 2014, 117(2): 549-561.

【21】Haouari R, Rochus V, Lagae L, et al. Topology optimization of an acoustical cell for gaseous photoacoustic spectroscopy using COMSOL multiphysics . [C]//Proceedings of the COMSOL Conference.[S.l.:s.n.]. 2017, 1-6.

【22】Cheng G, Cao Y, Liu K, et al. Numerical calculation and optimization of photoacoustic cell for photoacoustic spectrometer [J]. Acta Physica Sinica. 2019, 68(7): 074202.
程刚, 曹渊, 刘锟, 等. 光声光谱检测装置中光声池的数值计算及优化 [J]. 物理学报. 2019, 68(7): 074202.

【23】VDI-Gesellschaft V C, Verein D I. VDI-W?rmeatlas: berechnungsbl?tter für den W?rmeübergang [M]. Berlin: Springer. 2002, 13-27.

【24】Miklós A, Hess P, Bozóki Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology [J]. Review of Scientific Instruments. 2001, 72(4): 1937-1955.

【25】Bijnen F G C, Reuss J, Harren F J M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection [J]. Review of Scientific Instruments. 1996, 67(8): 2914-2923.

引用该论文

Li Zehao,Yang Chunyong,Tang Zihao,Peng Miaomiao,Ni Wenjun,Guo Lianbo,Hou Jin,Chen Shaoping. Design and Performance Analysis of Curved Body and Girdled Waist Photoacoustic Cells[J]. Chinese Journal of Lasers, 2021, 48(1): 0111002

李泽昊,杨春勇,唐梓豪,彭苗苗,倪文军,郭连波,侯金,陈少平. 曲体束腰型光声池的设计及性能分析[J]. 中国激光, 2021, 48(1): 0111002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF