首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:220003--1)

图像中的设备指纹提取技术研究综述

Review of Device Fingerprint Extraction Techniques in Image

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着图像获取与传输便利性的不断提高以及图像编辑工具的快速普及,使得恶意用户能够容易拍摄、传播、编辑和修改数字图像,进而达到实施恶意行为或犯罪的目的,则数字图像或视频将成为侦查取证与司法诉讼的关键证据。由图像传感器制造工艺的缺陷和硅晶片的不均匀性引起的光照响应不一致性(PRNU)对于每个相机来说,具有唯一性和稳定性,因此可以将其作为图像来源取证的有效设备指纹。首先对包括设备指纹技术在内的数字图像取证技术进行整体性的回顾,并介绍设备指纹的主要应用情景;然后介绍图像中设备指纹提取的基本技术原理,对设备指纹的提取技术发展情况进行综述;最后对设备指纹提取技术亟待解决的问题与技术发展趋势进行探讨。

Abstract

With the continuous improvement of the convenience of image acquisition and transmission and the rapid popularization of image editing tools, a malicious users can easily shoot, spread, edit and modify digital images to achieve the purpose of malicious behavior or crime. It becomes the key evidence for investigation and collection of evidence and judicial proceedings. The illumination response inconsistency (PRNU) causes by the defects of the image sensor manufacturing process and the unevenness of the silicon wafer is unique and stable for each camera, so it can be used as an effective device fingerprint for image source forensics. First, a comprehensive review of digital image forensics technologies including device fingerprint technology is conducted, and the main application scenarios of device fingerprints are introduced. Then, the basic technical principles of device fingerprint extraction in images is introduced, and the development of device fingerprint extraction technology is summarized. Finally, the problems to be solved and the technology development trend of the device fingerprint extraction technology are discussed.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391.41

DOI:10.3788/LOP57.220003

所属栏目:综述

基金项目:国家自然科学基金、 四川省科技计划项目、 公安部技术研究计划、 泸州市科技局项目;

收稿日期:2020-02-17

修改稿日期:2020-04-10

网络出版日期:2020-11-01

作者单位    点击查看

张明旺:四川警察学院科研所, 四川 泸州 646000
肖延辉:中国人民公安大学国家安全与反恐怖学院, 北京 100038
田华伟:中国人民公安大学国家安全与反恐怖学院, 北京 100038
郝昕泽:中国人民公安大学国家安全与反恐怖学院, 北京 100038
李丽华:中国人民公安大学国家安全与反恐怖学院, 北京 100038

联系人作者:田华伟(hwtian@live.cn)

备注:国家自然科学基金、 四川省科技计划项目、 公安部技术研究计划、 泸州市科技局项目;

【1】Sandoval Orozco A L, Arenas González D M, García Villalba L J, et al. Analysis of errors in EXIF metadata on mobile devices [J]. Multimedia Tools and Applications. 2015, 74(13): 4735-4763.Sandoval Orozco A L, Arenas González D M, García Villalba L J, et al. Analysis of errors in EXIF metadata on mobile devices [J]. Multimedia Tools and Applications. 2015, 74(13): 4735-4763.

【2】Tian H W, Zhao Y, Ni R R, et al. LDFT-based watermarking resilient to local desynchronization attacks [J]. IEEE Transactions on Cybernetics. 2013, 43(6): 2190-2201.

【3】Tian H W, Xiao Y H, Cao G, et al. Robust watermarking of mobile video resistant against barrel distortion [J]. China Communications. 2016, 13(9): 131-138.

【4】Tian H W, Zhao Y, Wang Z, et al. Robust multi-bit watermarking for free-view television using light field rendering [J]. IEICE Transactions on Information and Systems. 2013, 96(12): 2820-2829.

【5】Tian H W, Zhao Y, Ni R R, et al. Geometrically robust image watermarking by sector-shaped partitioning of geometric-invariant regions [J]. Optics Express. 2009, 17(24): 21819-21836.

【6】Kurosawa K, Kuroki K, Saitoh N. CCD fingerprint method-identification of a video camera from videotaped images [J]. Proceedings 1999 International Conference on Image Processing. 1999, 3: 537-540.

【7】Geradts Z J, Bijhold J, Kieft M, et al. Methods for identification of images acquired with digital cameras [J]. Proceedings of SPIE. 2001, 4232: 505-512.

【8】Bayram S, Sencar H, Memon N, et al. Source camera identification based on CFA interpolation . [C]//IEEE International Conference on Image Processing 2005, September 14, 2005, Genova, Italy. New York: IEEE. 2005, 8835799.

【9】Swaminathan A, Wu M. Liu K J R. Nonintrusive component forensics of visual sensors using output images [J]. IEEE Transactions on Information Forensics and Security. 2007, 2(1): 91-106.

【10】Sorell M J. Digital camera source identification through JPEG quantisation [M]. //Sorell M J. Multimedia forensics and security. Pennsylvania: IGI Global. 2008, 291-313.

【11】Alles E J. Geradts Z J M H, Veenman C J. Source camera identification for heavily JPEG compressed low resolution still images [J]. Journal of Forensic Sciences. 2009, 54(3): 628-638.

【12】Choi K S, Lam E Y. Wong K K Y. Source camera identification using footprints from lens aberration [J]. Proceedings of SPIE. 2006, 6069: 60690J.

【13】Van L T, Emmanuel S, Kankanhalli M S. Identifying source cell phone using chromatic aberration . [C]//2007 IEEE International Conference on Multimedia and Expo, July 2-5, 2007, Beijing, China. New York: IEEE. 2007, 883-886.

【14】Kharrazi M, Sencar H T, Memon N. Blind source camera identification . [C]//2004 International Conference on Image Processing, 2004, October 24-27, 2004, Singapore, Singapore. New York: IEEE. 2004, 709-712.

【15】?eliktutan O, Sankur B, Avciba? I. Blind identification of source cell-phone model [J]. IEEE Transactions on Information Forensics and Security. 2008, 3(3): 553-566.

【16】Lukas J, Fridrich J, Goljan M. Digital camera identification from sensor pattern noise [J]. IEEE Transactions on Information Forensics and Security. 2006, 1(2): 205-214.

【17】Thai T H, Cogranne R, Retraint F. Camera model identification based on the heteroscedastic noise model [J]. IEEE Transactions on Image Processing. 2014, 23(1): 250-263.

【18】Popescu A C, Farid H. Exposing digital forgeries by detecting traces of resampling [J]. IEEE Transactions on Signal Processing. 2005, 53(2): 758-767.

【19】Popescu A C, Farid H. Exposing digital forgeries in color filter array interpolated images [J]. IEEE Transactions on Signal Processing. 2005, 53(10): 3948-3959.

【20】Johnson M K, Farid H. Exposing digital forgeries by detecting inconsistencies in lighting . [C]//Proceedings of the 7th workshop on Multimedia and security-MM&Sec’05, August 1-2, 2005, New York, NY, USA. New York: ACM. 2005, 1-10.

【21】Lin Z, Wang R, Tang X, et al. Detecting doctored images using camera response normality and consistency . [C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), June 20-25, 2005, San Diego, CA, USA. New York: IEEE. 2005, 1087-1092.

【22】Chen W, Shi Y Q, Su W. Image splicing detection using 2D phase congruency and statistical moments of characteristic function [J]. Proceedings of SPIE. 2007, 6505: 65050R.

【23】Kivanc Mihcak M, Kozintsev I, Ramchandran K. Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising . [C]//1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings, March 15-19, 1999, Phoenix, AZ, USA. New York: IEEE. 1999, 3253-3256.

【24】Kang X G, Chen J S, Lin K R, et al. A context-adaptive SPN predictor for trustworthy source camera identification [J]. EURASIP Journal on Image and Video Processing. 2014, 2014(1): 19.

【25】Cooper A J. Improved photo response non-uniformity (PRNU) based source camera identification [J]. Forensic Science International. 2013, 226(1/2/3): 132-141.

【26】Zeng H, Kang X G. Fast source camera identification using content adaptive guided image filter [J]. Journal of Forensic Sciences. 2016, 61(2): 520-526.

【27】Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing. 2007, 16(8): 2080-2095.

【28】Xu J, Zhang L, Zhang D. A trilateral weighted sparse coding scheme for real-world image denoising [M]. //Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer. 2018, 11212: 21-38.

【29】Lü J R, Luo X G, Qi S F, et al. Image denoising using weighted nuclear norm minimization with preserving local structure [J]. Laser & Optoelectronics Progress. 2019, 56(16): 161006.
吕俊瑞, 罗学刚, 岐世峰, 等. 保持局部结构的加权核范数最小化图像去噪 [J]. 激光与光电子学进展. 2019, 56(16): 161006.

【30】Liu Y C, Zhao C H, Xu Q. Neural network-based noise suppression algorithm for star images captured during daylight hours [J]. Acta Optica Sinica. 2019, 39(6): 0610003.
刘宇宸, 赵春晖, 徐卿. 基于神经网络的全天时天文导航图像去噪方法 [J]. 光学学报. 2019, 39(6): 0610003.

【31】Cortiana A, Conotter V, Boato G, et al. Performance comparison of denoising filters for source camera identification [J]. Proceedings of SPIE. 2011, 7880: 788007.

【32】Chierchia G, Parrilli S, Poggi G, et al. On the influence of denoising in PRNU based forgery detection . [C]//MiFor’10: Proceedings of the 2nd ACM Workshop on Multimedia in Forensics, Security and Intelligence, October 29, 2010, Firenze, Italy. New York: ACM. 2010, 117-122.

【33】Zhang Y S, Tian H W, Xiao Y H, et al. PRNU extraction algorithm based on trilateral weighted sparse coding model [J]. Journal of Applied Sciences. 2019, 37(5): 704-710.
张永胜, 田华伟, 肖延辉, 等. 基于三方加权稀疏编码模型的PRNU提取算法 [J]. 应用科学学报. 2019, 37(5): 704-710.

【34】Chen M, Fridrich J, Goljan M, et al. Determining image origin and integrity using sensor noise [J]. IEEE Transactions on Information Forensics and Security. 2008, 3(1): 74-90.

【35】Lawgaly A, Khelifi F, Bouridane A. Weighted averaging-based sensor pattern noise estimation for source camera identification . [C]//2014 IEEE International Conference on Image Processing (ICIP), October 27-30, 2014, Paris, France. New York: IEEE. 2014, 5357-5361.

【36】Kang X G, Li Y X, Qu Z H, et al. Enhancing source camera identification performance with a camera reference phase sensor pattern noise [J]. IEEE Transactions on Information Forensics and Security. 2012, 7(2): 393-402.

【37】Kang X G, Li Y X, Qu Z H, et al. Enhancing ROC performance of trustworthy camera source identification [J]. Proceedings of SPIE. 2011, 7880: 788009.

【38】Lin X F, Li C T. Preprocessing reference sensor pattern noise via spectrum equalization [J]. IEEE Transactions on Information Forensics and Security. 2016, 11(1): 126-140.

【39】Hsu C C, Hung T Y, Lin C W, et al. Video forgery detection using correlation of noise residue . [C]//2008 IEEE 10th Workshop on Multimedia Signal Processing, October 8-10, 2008, Cairns, Qld, Australia. New York: IEEE. 2008, 170-174.

【40】Chierchia G, Parrilli S, Poggi G, et al. PRNU-based detection of small-size image forgeries . [C]//2011 17th International Conference on Digital Signal Processing (DSP), July 6-8, 2011, Corfu, Greece. New York: IEEE. 2011, 12216957.

【41】Cozzolino D, Gragnaniello D. -11-27)[2020-02-16] [EB/OL]. Verdoliva L. A novel framework for image forgery localization. 2013, org/abs/1311: 6932.Cozzolino D, Gragnaniello D. -11-27)[2020-02-16] [EB/OL]. Verdoliva L. A novel framework for image forgery localization. 2013, org/abs/1311: 6932.

【42】Chierchia G, Poggi G, Sansone C, et al. A Bayesian-MRF approach for PRNU-based image forgery detection [J]. IEEE Transactions on Information Forensics and Security. 2014, 9(4): 554-567.

【43】Li C T, Li Y. Color-decoupled photo response non-uniformity for digital image forensics [J]. IEEE Transactions on Circuits and Systems for Video Technology. 2012, 22(2): 260-271.

【44】Hu Y J, Yu B H, Jian C. Source camera identification using large components of sensor pattern noise . [C]//2009 2nd International Conference on Computer Science and its Applications, December 10-12, 2009, Jeju, Korea. New York: IEEE. 2009.

【45】Tomioka Y, Ito Y, Kitazawa H. Robust digital camera identification based on pairwise magnitude relations of clustered sensor pattern noise [J]. IEEE Transactions on Information Forensics and Security. 2013, 8(12): 1986-1995.

【46】Li R Z, Guan Y, Li C T. PCA-based denoising of Sensor Pattern Noise for source camera identification . [C]//2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), July 9-13, 2014, Xi’an, China. New York: IEEE. 2014, 436-440.

【47】Bayram S, Sencar H T, Memon N. Efficient sensor fingerprint matching through fingerprint binarization [J]. IEEE Transactions on Information Forensics and Security. 2012, 7(4): 1404-1413.

【48】Valsesia D, Coluccia G, Bianchi T, et al. Compressed fingerprint matching and camera identification via random projections [J]. IEEE Transactions on Information Forensics and Security. 2015, 10(7): 1472-1485.

【49】Manabu O. Statistical results & outlook [EB/OL]. 2020.Manabu O. Statistical results & outlook [EB/OL]. 2020.

【50】Flickr B. Smartphones dominate flickr uploads in 2016, apple leads device makers [EB/OL]. 2016.Flickr B. Smartphones dominate flickr uploads in 2016, apple leads device makers [EB/OL]. 2016.

【51】Gloe T, B?hme R. The Dresden image database for benchmarking digital image forensics [J]. Journal of Digital Forensic Practice. 2010, 3(2/3/4): 150-159.

【52】Shullani D, Fontani M, Iuliani M, et al. VISION: a video and image dataset for source identification [J]. EURASIP Journal on Information Security. 2017, 2017(1): 15.

【53】Tian H W, Xiao Y H, Cao G, et al. Daxing smartphone identification dataset [J]. IEEE Access. 2019, 7: 101046-101053.

【54】Goljan M. Digital camera identification from images-estimating false acceptance probability [M]. //Kim H J, Katzenbeisser S, Ho A T S. Digital watermarking. Lecture notes in computer science. Berlin: Springer. 2009, 5450: 454-468.

【55】Al-Ani M, Khelifi F. On the SPN estimation in image forensics: a systematic empirical evaluation [J]. IEEE Transactions on Information Forensics and Security. 2017, 12(5): 1067-1081.

引用该论文

Zhang Mingwang,Xiao Yanhui,Tian Huawei,Hao Xinze,Li Lihua. Review of Device Fingerprint Extraction Techniques in Image[J]. Laser & Optoelectronics Progress, 2020, 57(22): 220003

张明旺,肖延辉,田华伟,郝昕泽,李丽华. 图像中的设备指纹提取技术研究综述[J]. 激光与光电子学进展, 2020, 57(22): 220003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF