首页 > 论文 > 中国激光 > 46卷 > 9期(pp:901005--1)

脉宽依赖的飞秒激光成丝钳制光强的研究

Pulse-Duration-Dependent Clamping Intensity in Femtosecond Laser Filament

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了飞秒激光成丝过程中钳制光强对脉宽的依赖关系。对不同脉宽成丝钳制光强进行直接实验测量,发现当脉宽逐渐展宽(由45 fs展宽至177 fs)时,对应的钳制光强逐渐减小。实验结论与通过求解非线性薛定谔方程得到的数值模拟结果一致。依赖于脉宽的钳制光强的分析结果可为深入理解与脉宽相关的光丝应用提供科学依据和新思路。

Abstract

Herein, the pulse-duration-dependent clamping intensity in a femtosecond laser filament is systematically investigated. The clamping intensity in the laser filament is directly measured. Results show that the clamping intensity gradually decreases as the pulse duration stretches from 45 fs to 177 fs. The experimental results are in a good agreement with the simulation results obtained by solving the nonlinear Schr?dinger equation. The analysis of pulse-duration-dependent clamping intensity in the laser filament provides scientific basis and new ideas for fully understanding intensity related filament applications.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0901005

所属栏目:激光器件与激光物理

基金项目:中国科学院战略性先导科技专项、中国科学院国际合作重点项目;

收稿日期:2019-03-22

修改稿日期:2019-05-21

网络出版日期:2019-09-01

作者单位    点击查看

张旋:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
王铁军:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
郭豪:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
孙海轶:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
李儒新:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049

联系人作者:王铁军(tiejunwang@siom.ac.cn)

备注:中国科学院战略性先导科技专项、中国科学院国际合作重点项目;

【1】Chin S L. Femtosecond laser filamentation. New York: Springer. (2010).

【2】Chin S L, Hosseini S A, Liu W et al. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges. Canadian Journal of Physics. 83(9), 863-905(2005).

【3】Couairon A and Mysyrowicz A. Femtosecond filamentation in transparent media. Physics Reports. 441(2/3/4), 47-189(2007).

【4】Bergé L, Skupin S, Nuter R et al. Ultrashort filaments of light in weakly ionized, optically transparent media. Reports on Progress in Physics. 71(10), (2008).

【5】Kasparian J and Wolf J P. Physics and applications of atmospheric nonlinear optics and filamentation. Optics Express. 16(1), 466-493(2008).

【6】Kandidov V P, Shlenov S A and Kosareva O G. Filamentation of high-power femtosecond laser radiation. Quantum Electronics. 39(3), 205-228(2009).

【7】Chin S L, Wang T J, Marceau C et al. Advances in intense femtosecond laser filamentation in air. Laser Physics. 22(1), 1-53(2012).

【8】Wolf J P. Short-pulse lasers for weather control. Reports on Progress in Physics. 81(2), (2018).

【9】Chin S L, Brodeur A, Petit S et al. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser). Journal of Nonlinear Optical Physics & Materials. 8(1), 121-146(1999).

【10】Luo Q, Liu W and Chin S L. Lasing action in air induced by ultra-fast laser filamentation. Applied Physics B. 76(3), 337-340(2003).

【11】Yao J P, Zeng B, Xu H L et al. High-brightness switchable multiwavelength remote laser in air. Physical Review A. 84(5), (2011).

【12】Du S Z, Zhu Z B, Liu Y X et al. Optimization design scheme of femtosecond laser induced corona discharge. Chinese Journal of Lasers. 44(6), (2017).
杜盛喆, 朱忠彬, 刘尧香 等. 飞秒激光诱导电晕放电的优化设计方案. 中国激光. 44(6), (2017).

【13】Zhang J H, Wang T J, Zhu Z B et al. Femtosecond laser guided negative corona. Chinese Journal of Lasers. 45(10), (2018).
张健浩, 王铁军, 朱忠彬 等. 飞秒激光诱导负电晕研究. 中国激光. 45(10), (2018).

【14】Wang T J, Wei Y X, Liu Y X et al. Direct observation of laser guided corona discharges. Scientific Reports. 5, (2016).

【15】Liu Y X, Wang T J, Chen N et al. Probing the effective length of plasma inside a filament. Optics Express. 25(10), 11078-11087(2017).

【16】Tu Z W, Wei X Y, Liu C et al. Detection of iodine sublimation by filament-induced fluorescence spectroscopy. Chinese Journal of Lasers. 44(4), (2017).
涂志伟, 魏祥野, 刘畅 等. 利用光丝诱导荧光光谱测量单质碘升华过程. 中国激光. 44(4), (2017).

【17】Zhang Y J, Song H Y, Liu H Y et al. Fabrication of millimeter-scaled holes by femtosecond laser filamentation. Chinese Journal of Lasers. 44(4), (2017).
张艳杰, 宋海英, 刘海云 等. 飞秒激光成丝制备毫米级深孔. 中国激光. 44(4), (2017).

【18】Du S Z, Wang T J, Zhu Z B et al. Laser guided ionic wind. Scientific Reports. 8, (2018).

【19】Kasparian J, Sauerbrey R and Chin S L. The critical laser intensity of self-guided light filaments in air. Applied Physics B. 71(6), 877-879(2000).

【20】Chiron A, Lamouroux B, Lange R et al. Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases. The European Physical Journal D. 6(3), 383-396(1999).

【21】Bernhardt J, Liu W, Chin S L et al. Pressure independence of intensity clamping during filamentation: theory and experiment. Applied Physics B. 91(1), 45-48(2008).

【22】Petit S, Talebpour A, Proulx A et al. Polarization dependence of the propagation of intense laser pulses in air. Optics Communications. 175(4/5/6), 323-327(2000).

【23】Ghosh G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Optics communications. 163(1/2/3), 95-102(1999).

【24】Xu Z J, Liu W, Zhang N et al. Effect of intensity clamping on laser ablation by intense femtosecond laser pulses. Optics Express. 16(6), 3604-3609(2008).

【25】Liu X L, Lu X, Liu X et al. Tightly focused femtosecond laser pulse in air: from filamentation to breakdown. Optics Express. 18(25), 26007-26017(2010).

【26】Daigle J F, Jaroń-Becker A, Hosseini S et al. Intensity clamping measurement of laser filaments in air at 400 and 800 nm. Physical Review A. 82(2), (2010).

【27】Liu J S, Duan Z L, Zeng Z N et al. Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air. Physical Review E. 72(2), (2005).

【28】Mitryukovskiy S I, Liu Y, Houard A et al. Re-evaluation of the peak intensity inside a femtosecond laser filament in air. Journal of Physics B. 48(9), (2015).

【29】Li H L, Chu W, Zang H W et al. Critical power and clamping intensity inside a filament in a flame. Optics Express. 24(4), 3424-3431(2016).

【30】Wang X Y. Investigation on the pulse width effect of femtosecond laser filamentation in combustion fields. Changchun: Jilin University. (2007).
王旭禹. 燃烧场中飞秒激光成丝的脉宽效应研究. 长春: 吉林大学. (2017).

【31】Zeng B, Wang T J, Hosseini S et al. Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses. Journal of the Optical Society of America B. 29(12), 3226-3230(2012).

【32】Liang H, Sun H Y, Liu Y H et al. Chirp control of femtosecond laser-filamentation-induced snow formation in a cloud chamber. Chinese optics Letters. 13(3), (2015).

【33】Arabanian A S and Massudi R. Study on effect of polarization and frequency chirp of incident pulse on femtosecond laser induced modification inside silica glass. Journal of the Optical Society of America B. 31(4), 748-754(2014).

【34】Park J, Lee J H and Nam C H. Laser chirp effect on femtosecond laser filamentation generated for pulse compression. Optics Express. 16(7), 4465-4470(2008).

【35】Nuter R, Skupin S and Bergé L. Chirp-induced dynamics of femtosecond filaments in air. Optics Letters. 30(8), 917-919(2005).

【36】Noack J and Vogel A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE Journal of Quantum Electronics. 35(8), 1156-1167(1999).

【37】Rodriguez M, Bourayou R, Méjean G et al. Kilometer-range nonlinear propagation of femtosecond laser pulses. Physical Review E. 69(3), (2004).

【38】Théberge F, Liu W W, Simard P T et al. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing. Physical Review E. 74(3), (2006).

【39】Couairon A, Brambilla E, Corti T et al. Practitioner''''s guide to laser pulse propagation models and simulation. The European Physical Journal Special Topics. 199(1), 5-76(2011).

【40】Deng Y, Jin T, Zhao X W et al. Simulation of femtosecond laser pulse propagation in air. Optics & Laser Technology. 45, 379-388(2013).

【41】Kolesik M, Moloney J V and Wright E M. Polarization dynamics of femtosecond pulses propagating in air. Physical Review E. 64(4), (2001).

【42】Ripoche J F, Grillon G, Prade B et al. Determination of the time dependence of n2 in air. Optics Communications. 135(4/5/6), 310-314(1997).

【43】Nibbering E T J, Grillon G, Franco M A et al. . Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. Journal of the Optical Society of America B. 14(3), 650-660(1997).

【44】Tong X M, Zhao Z X and Lin C D. Theory of molecular tunneling ionization. Physical Review A. 66, (2002).

引用该论文

Xuan Zhang,Tiejun Wang,Hao Guo,Haiyi Sun,Ruxin Li. Pulse-Duration-Dependent Clamping Intensity in Femtosecond Laser Filament[J]. Chinese Journal of Lasers, 2019, 46(9): 0901005

张旋,王铁军,郭豪,孙海轶,李儒新. 脉宽依赖的飞秒激光成丝钳制光强的研究[J]. 中国激光, 2019, 46(9): 0901005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF