首页 > 论文 > 光学学报 > 40卷 > 18期(pp:1806002--1)

基于薄芯-三芯细锥-薄芯光纤结构的应变传感器

Strain Sensor Based on Thin Core-Tapered Three Cores-Thin Core Fiber Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种新的弱耦合三芯锥形光纤结构的应变传感器,该结构两端由薄芯光纤、中间由熔融拉锥三芯光纤构成,形成薄芯-三芯细锥-薄芯的三明治结构。实验研究了三芯长度和锥腰直径长度对传感器的应变与温度特性影响。结果表明:在0~1600 με应变范围内,传感器的干涉光谱随应变增大发生蓝移,当三芯光纤长度为7.4 cm,锥腰直径长度为41.20 μm时,其最大应变灵敏度为-3.47 pm/με,线性拟合度为0.9876;同时对温度传感特性进行探究,在25~60 ℃温度范围内,传感器温度灵敏度为34.52 pm/℃,线性拟合度0.9979。交叉敏感度为9.95 με/℃。该应变传感器具有成本低廉、结构简单、测量范围较大的优点,在工业生产、建筑监测等领域有潜在的应用价值。

Abstract

A novel strain sensor based on a weakly coupled fiber structure with three tapered cores is proposed. This structure comprises two thin-core fibers and a tapered three-core fiber, in which the tapered three-core fiber is sandwiched between two thin-core fibers. The strain and temperature characteristics of the sensor were studied using various lengths of the tapered three-core fiber. The results show that the interference spectrum of the sensor is blue-shifted with increasing strain in the range of 0--1600 με. With a three-core fiber length of 7.4 cm and a cone diameter of 41.20 μm, the maximum strain sensitivity is -3.47 pm/με, and the linearity is 0.9876. At the same time, we also investigated the temperature sensing characteristics. In the temperature range of 25--60 ℃, the temperature sensitivity of the sensor is 34.52 pm/℃, and the linearity is 0.9979. The cross-sensitivity is 9.95 με/℃. The proposed sensor has the advantages of low cost, simple structure, and wide measurement range, and has potential applications in fields such as industrial production and construction monitoring.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN253

DOI:10.3788/AOS202040.1806002

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、重庆市教委重大科技项目、重庆市科技创新领军人才项目、重庆市巴南区科技项目;

收稿日期:2020-04-22

修改稿日期:2020-06-09

网络出版日期:2020-09-01

作者单位    点击查看

徐施施:重庆理工大学理学院物理与能源系, 重庆 400054
冯文林:重庆理工大学理学院物理与能源系, 重庆 400054绿色能源材料技术与系统重庆市重点实验室, 重庆 400054

联系人作者:冯文林(wenlinfeng@126.com)

备注:国家自然科学基金、重庆市教委重大科技项目、重庆市科技创新领军人才项目、重庆市巴南区科技项目;

【1】Tian J J, Li Z G, Sun Y X, et al. High-sensitivity fiber-optic strain sensor based on the vernier effect and separated Fabry-Perot interferometers [J]. Journal of Lightwave Technology. 2019, 37(21): 5609-5618.

【2】Ye X W, Su Y H, Han J P. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review [J]. The Scientific World Journal. 2014, 2014: 1-11.

【3】Islam M, Ali M, Lai M H, et al. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review [J]. Sensors. 2014, 14(4): 7451-7488.

【4】Ramakrishnan M, Rajan G, Semenova Y, et al. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials [J]. Sensors. 2016, 16(1): 99.

【5】Markowski K, J?drzejewski K, Marz?cki M, et al. Linearly chirped tapered fiber-Bragg-grating-based Fabry-Perot cavity and its application in simultaneous strain and temperature measurement [J]. Optics Letters. 2017, 42(7): 1464-1467.

【6】Liu W L, Sun C T, Geng T, et al. A new spring-shaped long-period fiber grating with high strain sensitivity [J]. IEEE Photonics Technology Letters. 2019, 31(14): 1163-1166.

【7】You R Z, Ren L, Song G B. A novel fiber Bragg grating (FBG) soil strain sensor [J]. Measurement. 2019, 139: 85-91.

【8】Yang F, Wang Z K, Wang D N. A highly sensitive optical fiber strain sensor based on cascaded multimode fiber and photonic crystal fiber [J]. Optical Fiber Technology. 2019, 47: 102-106.

【9】Aitkulov A, Tosi D. Optical fiber sensor based on plastic optical fiber and smartphone for measurement of the breathing rate [J]. IEEE Sensors Journal. 2019, 19(9): 3282-3287.

【10】Huang B S, Gao S C, Huang X C, et al. High-sensitivity fiber Fabry-Pérot interferometer strain sensor [J]. Acta Optica Sinica. 2020, 40(6): 0606002.
黄炳森, 高社成, 黄新成, 等. 高敏光纤法布里-珀罗干涉应变传感器 [J]. 光学学报. 2020, 40(6): 0606002.

【11】Duan D W, Zhu T, Rao Y J, et al. A miniature extrinsic Fabry-Pérot interferometer strain sensor based on hollow-core photonic crystal fiber [J]. Acta Optica Sinica. 2008, 28(1): 17-20.
段德稳, 朱涛, 饶云江, 等. 基于空芯光子晶体光纤的微小型非本征光纤法布里-珀罗干涉应变传感器 [J]. 光学学报. 2008, 28(1): 17-20.

【12】Dong X R, Du H F, Sun X Y, et al. A novel strain sensor with large measurement range based on all fiber Mach-Zehnder interferometer [J]. Sensors. 2018, 18(5): 1549.

【13】Villatoro J, Arrizabalaga O, Durana G, et al. Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres [J]. Scientific Reports. 2017, 7: 4451.

【14】Hu Y Y, Ning T G, Zhang C B, et al. Strain sensor based on two concatenated abrupt-tapers in twin-core fiber [J]. Optical Fiber Technology. 2018, 46: 1-4.

【15】Li C, Ning T G, Zhang C, et al. All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications [J]. Sensors and Actuators A: Physical. 2016, 248: 148-154.

【16】Zhang C B, Ning T G, Zheng J J, et al. An optical fiber strain sensor by using of taper based TCF structure [J]. Optics & Laser Technology. 2019, 120: 105687.

【17】Tan Z, Liao C R, Liu S, et al. Simultaneous measurement sensors of temperature and strain based on hollow core fiber and fiber Bragg grating [J]. Acta Optica Sinica. 2018, 38(12): 1206007.
谭展, 廖常锐, 刘申, 等. 基于空芯光纤和光纤布拉格光栅的温度应变同时测量传感器 [J]. 光学学报. 2018, 38(12): 1206007.

【18】Dong X R, Luo Z, Du H F, et al. Highly sensitive strain sensor based on a novel Mach-Zehnder mode interferometer with TCF-PCF-TCF structure [J]. Optics and Lasers in Engineering. 2019, 116: 26-31.

【19】Li H, Li H B, Meng F Y, et al. All-fiber MZI sensor based on seven-core fiber and fiber ball symmetrical structure [J]. Optics and Lasers in Engineering. 2019, 112: 1-6.

【20】Duan L, Zhang P, Tang M, et al. Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing [J]. Optics Express. 2016, 24(18): 20210-20218.

【21】Yin B, Li Y, Liu Z B, et al. Investigation on a compact in-line multimode-single-mode-multimode fiber structure [J]. Optics & Laser Technology. 2016, 80: 16-21.

【22】Zhao Y, Cai L, Li X G. Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure [J]. IEEE Transactions on Instrumentation and Measurement. 2017, 66(1): 141-147.

【23】Liu Y, Wang D N, Chen W P. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement [J]. Scientific Reports. 2016, 6: 38390.

【24】Zhang N, Xu W, You S H, et al. Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF [J]. Optics Communications. 2018, 410: 70-74.

【25】Kumar A, Goel N K, Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference [J]. Journal of Lightwave Technology. 2001, 19(3): 358-362.

【26】Gao X K, Ning T G, Zhang C B, et al. A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing [J]. Optics Communications. 2020, 454: 124441.

引用该论文

Xu Shishi,Feng Wenlin. Strain Sensor Based on Thin Core-Tapered Three Cores-Thin Core Fiber Structure[J]. Acta Optica Sinica, 2020, 40(18): 1806002

徐施施,冯文林. 基于薄芯-三芯细锥-薄芯光纤结构的应变传感器[J]. 光学学报, 2020, 40(18): 1806002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF