首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:181403--1)

法布里-珀罗微腔中级联FRET光微流激光产生研究

Cascade FRET Optofluidic Laser Generation in Fabry-Perot Microcavity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

制备了高品质因子的法布里-珀罗(F-P)光学微腔,结合光微流控技术,采用溶于液体的有机染料香豆素6(Cou6)、罗丹明6G(R6G)、LDS 751的混合物作为增益介质,实现了低阈值级联荧光共振能量转移(FRET)光微流激光的输出。实验采用430 nm(Cou6的最大吸收峰)脉冲光作为抽运光,利用Cou6(供体)和R6G(受体)、R6G(供体)和LDS 751(受体)之间的共振能量转移,即两级共振能量转移过程,产生了对应有机染料LDS 751发射峰的近红外光微流激光。3种染料的FRET过程极大地降低了光微流激光产生的阈值,提高了激光产生过程中的转换效率,可在单一抽运源的情况下,将激光发射波长向长波长方向扩展。

Abstract

Combining with the optical microfluidic technique, we fabricated a Fabry-Perot (F-P) optical microcavity with high quality factor. We realized the generation of a low-threshold cascade fluorescence resonance energy transfer (FRET) optofluidic laser using a mixture containing three types of organic dyes [i.e., Coumarin 6 (Cou6), Rhodamine 6G (R6G), and LDS 751] in solution as the gain media. A pulsed laser with a wavelength of 430 nm (corresponding to the maximum absorption peak of Cou6) was used as the pumping source in the experiment. Further, a near-infrared optofluidic laser was generated, with a wavelength corresponding to the emission peak of LDS 751, using the resonance energy transfer processes between Cou6 (donor) and R6G (acceptor) as well as R6G (donor) and LDS 751 (acceptor), i.e., the second-order energy transfer processes. The laser threshold of the optofluidic laser was drastically decreased, and the corresponding conversion efficiency was considerably improved using the FRET of the three aforementioned types of organic dyes. Furthermore, the emission of the optofluidic laser could be tuned to a long wavelength when only one pumping source was supplied.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.181403

所属栏目:激光器与激光光学

基金项目:国家自然科学基金面上项目、山西省自然科学基金;

收稿日期:2019-02-28

修改稿日期:2019-04-09

网络出版日期:2019-09-01

作者单位    点击查看

邱诚玉:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
贾卓楠:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
张婷婷:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
侯梦迪:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
王文杰:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024

联系人作者:邱诚玉(1772469580@qq.com)

备注:国家自然科学基金面上项目、山西省自然科学基金;

【1】F?rster T. Transfer mechanisms of electronic excitation energy. Radiation Research Supplement. 2, 326-339(1960).

【2】Wu P G and Brand L. Resonance energy transfer: methods and applications. Analytical Biochemistry. 218(1), 1-13(1994).

【3】Lee W and Fan X D. Intracavity DNA melting analysis with optofluidic lasers. Analytical Chemistry. 84(21), 9558-9563(2012).

【4】Zhang X W, Lee W and Fan X D. Bio-switchable optofluidic lasers based on DNA Holliday junctions. Lab on a Chip. 12(19), 3673-3675(2012).

【5】Chen Q S, Zhang X W, Sun Y Z et al. Highly sensitive fluorescent protein FRET detection using optofluidic lasers. Lab on a Chip. 13(14), 2679-2681(2013).

【6】Gather M C and Yun S H. Single-cell biological lasers. Nature Photonics. 5(7), 406-410(2011).

【7】Gather M C and Yun S H. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers. Nature Communications. 5, (2014).

【8】Nizamoglu S, Gather M C and Yun S H. All-biomaterial laser using vitamin and biopolymers. Advanced Materials. 25(41), 5943-5947(2013).

【9】Wang H. Mechanism of water channel AQP4 participating in morphine dependence. Beijing: Academy of Military Medical Science. (2015).
王卉. 水通道AQP4参与吗啡依赖的机制研究. 北京: 中国人民解放军军事医学科学院. (2015).

【10】Pei H C. Rust resistance-related protein network in triticeae crops. Taian: Shandong Agricultural University. (2014).
裴洪翠. 麦类作物抗锈病相关蛋白互作网络的研究. 泰安: 山东农业大学. (2014).

【11】Guo S Y. Research methods and applications of viral protein interaction. Progress in Microbiology and Immunology. 39(1), 71-75(2011).
郭舒杨. 病毒蛋白质相互作用的研究方法及其应用. 微生物学免疫学进展. 39(1), 71-75(2011).

【12】Psaltis D, Quake S R and Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 442(7101), 381-386(2006).

【13】Fan X D and White I M. Optofluidic microsystems for chemical and biological analysis. Nature Photonics. 5(10), 591-597(2011).

【14】Zhang X H, Liu C, Liang C et al. Microlens array applied for laser induced fluorescence detection. Laser & Optoelectronics Progress. 54(8), (2017).
张学海, 刘冲, 梁超 等. 应用于激光诱导荧光检测的微透镜阵列. 激光与光电子学进展. 54(8), (2017).

【15】Shi S X, Yang Q W, Ouyang X P et al. Measurement technique of signal noise ratio based on resonator oscillation for femtosecond single-shot pulse. Chinese Journal of Lasers. 43(9), (2016).
石帅旭, 杨庆伟, 欧阳小平 等. 谐振腔振荡式飞秒单次脉冲信噪比的测量技术. 中国激光. 43(9), (2016).

【16】Fan X D and Yun S H. The potential of optofluidic biolasers. Nature Methods. 11(2), 141-147(2014).

【17】Liang X Y, Hou M D, Zhang T T et al. High resolution melting technology based on Fabry-Perot microcavity laser. Laser & Optoelectronics Progress. 55(10), (2018).
梁希月, 侯梦迪, 张婷婷 等. 基于法布里-珀罗微腔激光的高分辨率熔解技术研究. 激光与光电子学进展. 55(10), (2018).

【18】Han C, Qiu C Y, Hou M D et al. Measurement of liquid refractive index based on optofluidic single mode laser. Laser & Optoelectronics Progress. 55(8), (2018).
韩超, 邱诚玉, 侯梦迪 等. 基于光微流单模激光的液体折射率测量. 激光与光电子学进展. 55(8), (2018).

【19】Zhou C H, Zhang T T, Zhai A P et al. Generation of optofluidic FRET laser based on Fabry-Perot microcavity. Laser Technology. 41(1), 14-18(2017).
周春花, 张婷婷, 翟爱平 等. 基于法布里-珀罗微腔的光微流FRET激光产生. 激光技术. 41(1), 14-18(2017).

【20】Chen Q S, Kiraz A and Fan X D. Optofluidic FRET lasers using aqueous quantum dots as donors. Lab on a Chip. 16(2), 353-359(2016).

【21】Chen Q S, Liu H J, Lee W et al. Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control. Lab on a Chip. 13(17), 3351-3354(2013).

【22】Cerdán L, Enciso E, Martín V et al. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nature Photonics. 6(9), 621-626(2012).

【23】Zhang T T, Zhou C H, Wang W J et al. Generation of low-threshold optofluidic lasers in a stable Fabry-Perot microcavity. Optics & Laser Technology. 91, 108-111(2017).

【24】Wang W J, Zhou C H, Zhang T T et al. Optofluidic laser array based on stable high-Q Fabry-Perot microcavities. Lab on a Chip. 15(19), 3862-3869(2015).

【25】Kuehne A J C, Gather M C, Eydelnant I A et al. . A switchable digital microfluidic droplet dye-laser. Lab on a Chip. 11(21), 3716-3719(2011).

【26】Liu L Z, Liu Z H, He Z K et al. Quantum dots: the new development of FRET. Progress in Chemistry. 18(2/3), 337-343(2006).
刘玲芝, 刘志洪, 何治柯 等. FRET的新发展. 化学进展. 18(2/3), 337-343(2006).

引用该论文

Chengyu Qiu,Zhuonan Jia,Tingting Zhang,Mengdi Hou,Wenjie Wang. Cascade FRET Optofluidic Laser Generation in Fabry-Perot Microcavity[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181403

邱诚玉,贾卓楠,张婷婷,侯梦迪,王文杰. 法布里-珀罗微腔中级联FRET光微流激光产生研究[J]. 激光与光电子学进展, 2019, 56(18): 181403

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF