首页 > 论文 > 激光与光电子学进展 > 57卷 > 8期(pp:80001--1)

基于压缩感知算法的无透镜数字全息成像研究 (封面文章) (特邀综述)

Progress on Lensless Digital Holography Imaging Based on Compressive Holographic Algorithm (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

无透镜数字全息计算成像可以实现大视场高分辨率三维成像,但面临成像分辨率低和信噪比差的问题。为此,构建了基于衍射传输的无透镜压缩数字全息成像模型,开发了基于全变分正则化约束和两步迭代收缩阈值的优化算法,抑制了全息重建的二阶项噪声与孪生像噪声,并在重建模型中引入滤波层,提高了三维图像的重建信噪比。同时,提出了基于有效抗混叠区域的压缩全息分块并行重建算法,提升了压缩数字全息重建效率。建立了基于双角度照明的压缩数字全息成像模型,提高了三维成像的轴向分辨能力。基于上述算法,在多层掩模版和粒子流场上实现了大视场无透镜显微成像。

Abstract

Lensless digital holographic imaging could support high resolution, large field of view and three-dimensional (3D) imaging, but improving the resolution and quality of the reconstruction is still challenging. In this review paper, the compressive holographic models based on diffraction propagation method are introduced. Compressive sensing are developed based on total variation regularization and two-step iterative shrinkage/thresholding algorithm. The physical mechanism of removing two-order noise and twin image is discussed. A filter layer is designed to improve the signal to noise ratio of 3D reconstruction. A block-wise algorithm based on effective anti-aliasing region is proposed, which can improve computational efficiency of compressive holography. A single-shot compressive holographic model based on two-angle illumination beam is proposed. It effectively improves the axial resolution of 3D imaging. High-resolution 3D reconstruction of multilayer masks and particle flow field are demonstrated by using this algorithm.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:O438

DOI:10.3788/LOP57.080001

所属栏目:综述

基金项目:国家自然科学基金、中国国家留学基金;

收稿日期:2020-03-19

修改稿日期:2020-04-07

网络出版日期:2020-04-01

作者单位    点击查看

张华:清华大学精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084杜克大学电子与计算机工程系, 美国 达勒姆NC 27708
曹良才:清华大学精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084
金国藩:清华大学精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084
白瑞迪:杜克大学电子与计算机工程系, 美国 达勒姆NC 27708

联系人作者:曹良才(clc@tsinghua.edu.cn)

备注:国家自然科学基金、中国国家留学基金;

【1】Gabor D. A new microscopic principle [J]. Nature. 1948, 161(4098): 777-778.

【2】Leith E N, Upatnieks J. Wavefront reconstruction with continuous-tone objects [J]. Journal of the Optical Society of America. 1963, 53(12): 1377.

【3】Goodman J W, Lawrence R W. Digital image formation from electronically detected holograms [J]. Applied Physics Letters. 1967, 11(3): 77-79.

【4】Zhang T, Yamaguchi I. Three-dimensional microscopy with phase-shifting digital holography [J]. Optics Letters. 1998, 23(15): 1221-1223.

【5】Zhang H, Cao L C, Jin G F, et al. Applications and challenges of compressed imaging [J]. Science & Technology Review. 2018, 36(10): 20-29.
张华, 曹良才, 金国藩, 等. 压缩成像技术的应用与挑战 [J]. 科技导报. 2018, 36(10): 20-29.

【6】Brady D J, Pitslanis N, Sun X B, signal inference: US7427932B2[P], et al. -07-31 . 2007.

【7】Lim S, Marks D L, Brady D J. Sampling and processing for compressive holography [J]. Applied Optics. 2011, 50(34): H75-H86.

【8】Brady D J, Choi K, Marks D L, et al. Compressive holography [J]. Optics Express. 2009, 17(15): 13040-13049.

【9】Brady D J, Mrozack A. MacCabe K, et al. Compressive tomography [J]. Advances in Optics and Photonics. 2015, 7(4): 756-813.

【10】Liu Y, Tian L, Lee J W, et al. Scanning-free compressive holography for object localization with subpixel accuracy [J]. Optics Letters. 2012, 37(16): 3357-3359.

【11】Liu Y, Tian L, Hsieh C H, et al. Compressive holographic two-dimensional localization with 1/30 2 subpixel accuracy [J]. Optics Express. 2014, 22(8): 9774-9782.

【12】Chen W S, Tian L, Rehman S, et al. Empirical concentration bounds for compressive holographic bubble imaging based on a Mie scattering model [J]. Optics Express. 2015, 23(4): 4715-4725.

【13】Horisaki R, Tanida J, Stern A, et al. Multidimensional imaging using compressive Fresnel holography [J]. Optics Letters. 2012, 37(11): 2013-2015.

【14】Marim M M, Atlan M, Angelini E, et al. Compressed sensing with off-axis frequency-shifting holography [J]. Optics Letters. 2010, 35(6): 871-873.

【15】Rivenson Y, Stern A, Rosen J. Reconstruction guarantees for compressive tomographic holography [J]. Optics Letters. 2013, 38(14): 2509-2511.

【16】Rivenson Y, Rot A, Balber S, et al. Recovery of partially occluded objects by applying compressive Fresnel holography [J]. Optics Letters. 2012, 37(10): 1757-1759.

【17】Wang Z H, Spinoulas L, He K, et al. Compressive holographic video [J]. Optics Express. 2017, 25(1): 250-262.

【18】Brodoline A, Rawat N, Alexandre D, et al. 4D compressive sensing holographic microscopy imaging of small moving objects [J]. Optics Letters. 2019, 44(11): 2827-2830.

【19】Wu Y C, Wu X C, Wang Z H, et al. Reconstruction of digital inline hologram with compressed sensing [J]. Acta Optica Sinica. 2011, 31(11): 1109001.
吴迎春, 吴学成, 王智化, 等. 压缩感知重建数字同轴全息 [J]. 光学学报. 2011, 31(11): 1109001.

【20】Han C, Wu W, Li M M. Encoding and reconstruction of lensless off-axis Fourier hologram based on the theory of compressed sensing [J]. Chinese Journal of Lasers. 2014, 41(2): 0209015.
韩超, 吴伟, 李蒙蒙. 基于压缩感知理论的无透镜离轴傅里叶全息编码与重建 [J]. 中国激光. 2014, 41(2): 0209015.

【21】Weng J W, Qin Y, Yang C P, et al. Reconstruction of single low-coherence digital hologram by compressive sensing [J]. Laser & Optoelectronics Progress. 2015, 52(10): 100901.
翁嘉文, 秦怡, 杨初平, 等. 单幅弱相干光数字全息图的压缩感知重建 [J]. 激光与光电子学进展. 2015, 52(10): 100901.

【22】Wu X Y, Yu Y J, Zhou W J, et al. 4f amplified in-line compressive holography [J]. Optics Express. 2014, 22(17): 19860-19872.

【23】Lin Y C, Cheng C J, Lin L C. Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events [J]. Optics Letters. 2017, 42(11): 2082-2085.

【24】Bai Y B H, Lü X D, Li G Q, et al. Optical interference double gray image encryption system based on compressive sensing [J]. Laser & Optoelectronics Progress. 2016, 53(4): 041002.
白音布和, 吕晓东, 李根全, 等. 基于压缩感知的光学干涉双灰度图像加密系统 [J]. 激光与光电子学进展. 2016, 53(4): 041002.

【25】Yuan J, Li Q, Gong W P. Influences of compressive sensing 3D reconstruction algorithm control parameters on terahertz digital holography reconstruction [J]. Chinese Journal of Lasers. 2018, 45(10): 1014001.
袁静, 李琦, 巩文盼. 压缩感知三维重建算法控制参数对太赫兹数字全息再现的影响 [J]. 中国激光. 2018, 45(10): 1014001.

【26】Romberg J. Imaging via compressive sampling [J]. IEEE Signal Processing Magazine. 2008, 25(2): 14-20.

【27】Candès E, Romberg J. Sparsity and incoherence in compressive sampling [J]. Inverse Problems. 2007, 23(3): 969-985.

【28】Candes E J, Wakin M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine. 2008, 25(2): 21-30.

【29】Foucart S. A note on guaranteed sparse recovery via l1-minimization [J]. Applied and Computational Harmonic Analysis. 2010, 29(1): 97-103.

【30】Donoho D L. For most large underdetermined systems of equations, the minimal l1-norm near-solution approximates the sparsest near-solution [J]. Communications on Pure and Applied Mathematics. 2006, 59(7): 907-934.

【31】Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on Pure and Applied Mathematics. 2006, 59(8): 1207-1223.

【32】Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory. 2006, 52(2): 489-509.

【33】Chen S B, Donoho D. Systems and Computers, Pacific Grove, CA, USA. IEEE Comput. Soc. Press: , 1994, 41-44.

【34】Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration [J]. IEEE Transactions on Image Processing. 2007, 16(12): 2992-3004.

【35】Bioucas-Dias J M, Figueiredo M A T. Two-step algorithms for linear inverse problems with non-quadratic regularization . [C]∥2007 IEEE International Conference on Image Processing, September 16-October 19, 2007. San Antonio, TX, USA. IEEE. 2007, 105-108.

【36】Zhang W H, Cao L C, Brady D J, et al. Twin-image-free holography: a compressive sensing approach [J]. Physical Review Letters. 2018, 121(9): 093902.

【37】Yamaguchi T, Rehman S, Barbastathis G. Compressive holography with GPU calculation . [C]∥Digital Holography and Three-Dimensional Imaging, JeJu Island. Washington, D. C. : OSA. 2016.

【38】Endo Y, Shimobaba T, Kakue T, et al. GPU-accelerated compressive holography [J]. Optics Express. 2016, 24(8): 8437-8445.

【39】Zhang H, Cao L C, Zhang H, et al. Efficient block-wise algorithm for compressive holography [J]. Optics Express. 2017, 25(21): 24991-25003.

【40】Zhang H, Liu S W, Cao L C, et al. Noise suppression for ballistic-photons based on compressive in-line holographic imaging through an inhomogeneous medium [J]. Optics Express. 2020, 28(7): 10337-10349.

【41】Wu J C, Zhang H, Zhang W H, et al. Single-shot lensless imaging with Fresnel zone aperture and incoherent illumination [J]. Light Science & Application. 2020, 9(53): 1-11.

引用该论文

Zhang Hua,Cao Liangcai,Jin Guofan,David Brady. Progress on Lensless Digital Holography Imaging Based on Compressive Holographic Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(8): 080001

张华,曹良才,金国藩,白瑞迪. 基于压缩感知算法的无透镜数字全息成像研究[J]. 激光与光电子学进展, 2020, 57(8): 080001

被引情况

【1】郭澄,耿勇,翟玉兰,左琴,温秀,刘正君. 变参数计算成像技术研究进展. 激光与光电子学进展, 2020, 57(16): 160001--1

【2】齐琦,曹欣远,陈明生,刘艺,况晓静,吴先良. 基于压缩感知的腔体器件电磁特性的快速分析. 激光与光电子学进展, 2020, 57(19): 191405--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF