首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:180004--1)

太赫兹空间探测技术研究进展

Progress of Terahertz Space Exploration Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

太赫兹辐射因其具有独特的空间传输优势以及大气敏感特性,具有很大的应用潜力。总结了国内外各大研究机构近年来在太赫兹空间探测方面的研究进展,简述了大型太赫兹地基、空基、天基探测平台的结构参数、工作环境及探测结果,并对不同探测平台的研究结果进行了对比,分析了不同太赫兹遥感设备的特点,提出了太赫兹在空间探测方面的应用前景和未来的发展趋势等。太赫兹空间探测将是一个实用性很强的研究领域,可以获取光学和微波所不可探测的信息,太赫兹空间探测技术的发展将为高分辨空间遥感奠定重要的研究基础。

Abstract

Terahertz (THz) waves have great application potential because of their unique atmosphere sensitivity features and spatial transmission properties. This study summarizes the research achievements of major research institutions at home and abroad in THz space exploration. Further, we describe the parameters, working environment, and detection results of large ground-, aircraft-, and space-based THz space exploration platforms and compare the experimental results of these platforms. In addition, the features of THz remote sensing equipment are also analyzed. Finally, we present the application prospect and future development trends of THz space exploration. The THz space exploration technique can obtain unique information that cannot be acquired using optical methods or microwave technology, which makes it a prospective research area in the future. The development of THz space exploration technology will lay an important foundation for high-resolution space remote sensing.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.180004

所属栏目:综述

基金项目:国家自然科学基金;

收稿日期:2019-01-18

修改稿日期:2019-03-22

网络出版日期:2019-09-01

作者单位    点击查看

梁美彦:山西大学电子信息工程系, 山西 太原 030006
任竹云:山西大学电子信息工程系, 山西 太原 030006
张存林:首都师范大学太赫兹波谱与成像北京市重点实验室, 北京 100048首都师范大学太赫兹光电子学教育部重点实验室, 北京 100048首都师范大学物理系, 北京 100048

联系人作者:梁美彦(meiyanliang@sxu.edu.cn)

备注:国家自然科学基金;

【1】Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques. 50(3), 910-928(2002).

【2】Siegel P H. THz instruments for space. IEEE Transactions on Antennas and Propagation. 55(11), 2957-2965(2007).

【3】Siegel P H. Terahertz technology in outer and inner space. [C]//2007 Conference on Lasers and Electro-Optics (CLEO), May 6-11, 2007, Baltimore, MD, USA. Washington, DC: OSA. CThU1, (2007).

【4】Li Y Y, Wang X K, Zhang P et al. The transmission characters of terahertz radiation to stimulant sand-dust storm. Laser & Infrared. 38(9), 921-924(2008).
李宇晔, 王新柯, 张平 等. 模拟沙尘暴条件下的太赫兹辐射传输研究. 激光与红外. 38(9), 921-924(2008).

【5】Corti T, Luo B P, Fu Q et al. The impact of cirrus clouds on tropical troposphere-to-stratosphere transport. Atmospheric Chemistry and Physics. 6(9), 2539-2547(2006).

【6】Emde C, Buehler S A, Eriksson P et al. The effect of cirrus clouds on microwave limb radiances. Atmospheric Research. 72, 383-401(2004).

【7】Künzi K. Cloud ice water sub-millimeter imaging radiometer. Quarterly Journal of the Royal Meteorological Society. 126, 1281-1300(2001).

【8】de Maagt P. Terahertz technology for space and Earth applications. [C]//2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, March 21-23, 2007, Cambridge, UK. New York: IEEE. 111-115(2007).

【9】Kellarev A and Sheffer D. Terahertz remote sensing. Proceedings of SPIE. 8023, (2011).

【10】Phillips D J, Tanner E A, Everitt H O et al. Infrared/terahertz double resonance spectroscopy remote sensing. [C]//2011 International Conference on Infrared, Millimeter, and Terahertz Waves, October 2-7, 2011, Houston, TX, USA. New York: IEEE. 6105115, (2011).

【11】Appleby R and Wallace H B. Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE Transactions on Antennas and Propagation. 55(11), 2944-2956(2007).

【12】Zhu Z B, Dong S W, Wang Y et al. The way of THz signal generation and THz detection techniques for remote sensing. [C]//2011 International Conference on Electronics, Communications and Control (ICECC), September 9-11, 2011, Ningbo, China. New York: IEEE. 4601-4604(2011).

【13】Waters J W, Froidevaux L, Harwood R S et al. The Earth observing system microwave limb sounder (EOS MLS) on the Aura satellite. IEEE Transactions on Geoscience and Remote Sensing. 44(5), 1075-1092(2006).

【14】Kooi J W. Heterodyne receiver development at the Caltech submillimeter observatory. [C]//Submillimeter astrophysics and technology: a symposium honoring Thomas G. Phillips, February 23-24, 2009, San Francisco, CA, USA. USA: Astronomical Society of the Pacific Conference Series. 417, 377-410(2009).

【15】Dempsey J T. Ho P T P, Friberg P, et al. Current and near-term instrumentation at the James Clerk Maxwell telescope. [C]//2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), August 21-25, 2016, Seoul, Korea. New York: IEEE. 563-565(2016).

【16】Hills R E. Edwards B W H, Hall J E. Aspects of the design of the James Clerk Maxwell Telescope. [C]//IEE Colloquium on Mechanical Aspects of Antenna Design, April 24-24, 1989, London, UK. UK: IET. 3417208, (1989).

【17】Holland W S, Bintley D, Chapin E L et al. SCUBA-2: the 10000 pixel bolometer camera on the James Clerk Maxwell Telescope. Monthly Notices of the Royal Astronomical Society. 430(4), 2513-2533(2013).

【18】Ho P T P, Moran J M and Lo K Y. The submillimeter array. The Astrophysical Journal Letters. 616(1), L1-L6(2004).

【19】Rathborne J M, Jackson J M, Zhang Q et al. Submillimeter array observations of infrared dark clouds: a tale of two cores. The Astrophysical Journal. 689(2), 1141-1149(2008).

【20】Beuther H, Zhang Q, Reid M J et al. Submillimeter array 440 μm/690 GHz line and continuum observations of Orion KL. The Astrophysical Journal. 636(1), 323-331(2006).

【21】Bachiller R and Cerbicharo J. Science with the Atacama Large Millimeter Array: a new era for astrophysics. Dordrecht: Springer. 1-3(2008).

【22】Swetz D S. Ade P A R, Amiri M, et al. Overview of the Atacama Cosmology Telescope: receiver, instrumentation, and telescope systems. The Astrophysical Journal Supplement Series. 194(2), (2011).

【23】Hand N, Addison G E and Aubourg E. et al. Evidence of galaxy cluster motions with the kinematic Sunyaev-Zel''''dovich effect. Physical Review Letters. 109(4), (2012).

【24】Immer K, Belitsky V, Olberg M et al. SEPIA-a new instrument for the Atacama Pathfinder Experiment (APEX) telescope. The Messenger. 165, 13-17(2016).

【25】Güsten R, Booth R S, Cesarsky C et al. APEX: the Atacama Pathfinder Experiment. Proceedings of SPIE. 6267, (2006).

【26】Schwan D. Ade P A R, Basu K, et al. Invited article: millimeter-wave bolometer array receiver for the Atacama Pathfinder Experiment Sunyaev-Zel''''dovich (APEX-SZ) instrument. Review of Scientific Instruments. 82(9), (2011).

【27】Schwan D, Kneissl R, Ade P et al. APEX-SZ: the Atacam Apathfinder Experiment Sunyaev-Zel’dovich instrument. The Messenger. 147, 7-12(2012).

【28】Kamazaki T, Ezawa H, Tatematsu K et al. The remote control system for the ASTE telescope. [C]//Astronomical Data Analysis Software and Systems XIV ASP Conference Series, October 24-27, 2004, Pasadena, California, USA. San Francisco: Astronomical Society of the Pacific. 347, 533-537(2005).

【29】Ezawa H, Stepp L M and Gilmozzi R. Ground-based and airborne telescopes II. Proceedings of SPIE. 7012, (2008).

【30】Sebring T A, Giovanelli R, Radford S et al. Cornell Caltech Atacama Telescope (CCAT): a 25-m aperture telescope above 5000-m altitude. Proceedings of SPIE. 6267, (2006).

【31】Glaser S T and Strovers B K. Handling qualities flight testing of the stratospheric observatory for infrared astronomy (SOFIA). [C]//Society of Flight Test Engineers Symposium 2011 (SFTE Symposium), August 8-12, 2011, Seattle, WA, United States. United States: NASA Dryden Flight Research Center. (2011).

【32】Gehrz R D and Becklin E E. The stratospheric observatory for infrared astronomy (SOFIA). Proceedings of SPIE. 7012, (2008).

【33】Lampater U, Keas P, Brewster R et al. Pointing stability and image quality of the SOFIA Airborne Telescope during initial science missions. Proceedings of SPIE. 8336, (2011).

【34】Reach W T, Franz B A, Weiland J L et al. Observational confirmation of a circumsolar dust ring by the COBE satellite. Nature. 374(6522), 521-523(1995).

【35】Bennett C L, Bay M and Halpern M. et al. The microwave anisotropy probe (MAP) mission. The Astrophysical Journal. 583(1), 1-23(2003).

【36】Bennett C L, Larson D, Weiland J L et al. Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. The Astrophysical Journal Supplement Series. 208(2), (2013).

【37】Jarosik N, Bennett C L, Dunkley J et al. Seven-year Wilkinson microwave anisotropy probe (WMAP*) observations: sky maps, systematic errors, and basic results. The Astrophysical Journal Supplement Series. 192(2), (2011).

【38】Tauber J A, Mandolesi N, Puget J L et al. Planck pre-launch status: the Planck mission. Astronomy & Astrophysics. 520, (2010).

【39】Ade P A R, Aghanim N, Armitage-Caplan C et al. . Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources. Astronomy & Astrophysics. 571, (2014).

【40】Melnick G J and Stauffer J R. Ashby M L N, et al. The submillimeter wave astronomy satellite: science objectives and instrument description. The Astrophysical Journal Letters. 539(2), L77-L85(2000).

【41】Snell R L and Howe J E. Ashby M L N, et al. Submillimeter wave astronomy satellite observations of extended water emission in Orion. The Astrophysical Journal Letters. 539(2), L93-L96(2000).

【42】Bergin E. Chemistry in the void Chemistry & Industry. 2001(20), 659-662(0).

【43】Frisk U, Hagstr?m M, Ala-Laurinaho J et al. The Odin satellite-I. Radiometer design and test. Astronomy & Astrophysics. 402(3), L27-L34(2003).

【44】Lecacheux A, Biver N, Crovisier J et al. Observations of water in comets with Odin. Astronomy & Astrophysics. 402(3), L55-L58(2003).

【45】Drouin B J, Yu S S, Pearson J C et al. Terahertz spectroscopy for space applications: 2.5-2.7 THz spectra of HD, H2O and NH3. Journal of Molecular Structure. 1006(1/2/3), 2-12(2011).

【46】Griffin M. Pilbratt G, de Graauw T, et al. The Herschel space observatory. [C]//2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, September 15-19, 2008, Pasadena, CA,USA. New York: IEEE. 10384061, (2008).

【47】Pilbratt G L, Riedinger J R, Passvogel T et al. Herschel space observatory-an ESA facility for far-infrared and submillimetre astronomy. Astronomy & Astrophysics. 518, (2010).

【48】Yu S L. Application of terahertz technology in atmospheric remote sensing. C]//The 1st National Terahertz Conference on Science, Technology and Applications, September 14-17, 2012, Beijing, China. (2012).
余世里. 太赫兹技术在大气遥感中的应用. C]//第一届全国太赫兹科学技术与应用学术交流会, 2012年9月14日—17日, 中国, 北京. (2012).

【49】Stutzki J. Sub-mm-instrumentation: current projects at KOSMA/Universit?t zu K?ln. Proceedings of SPIE. 5498, 113-128(2004).

【50】Li D L, Esimbek J, Zhou J J et al. KOSMA 12CO(2-1) and (3-2) observations toward infrared dark clouds . Astrophysics and Space Science. 361(7), (2016).

【51】Hu Q. Terahertz quantum cascade lasers and applications. [C]//Optical Sensors, Sensors 2012, June 24-28, 2012, Monterey, California, United states. Washington, DC: OSA. SW3C, (2012).

【52】Armstrong C M. The truth about terahertz. IEEE Spectrum. 49(9), 36-41(2012).

引用该论文

Meiyan Liang,Zhuyun Ren,Cunlin Zhang. Progress of Terahertz Space Exploration Technology[J]. Laser & Optoelectronics Progress, 2019, 56(18): 180004

梁美彦,任竹云,张存林. 太赫兹空间探测技术研究进展[J]. 激光与光电子学进展, 2019, 56(18): 180004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF