首页 > 论文 > High Power Laser Science and Engineering > 8卷 > 2期(pp:16--1)

Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Experimental and simulation data [Moreau et al., Plasma Phys. Control. Fusion 62, 014013 (2019); Kaymak et al., Phys. Rev. Lett. 117, 035004 (2016)] indicate that self-generated magnetic fields play an important role in enhancing the flux and energy of relativistic electrons accelerated by ultra-intense laser pulse irradiation with nanostructured arrays. A fully relativistic analytical model for the generation of the magnetic field based on electron magneto-hydrodynamic description is presented here. The analytical model shows that this self-generated magnetic field originates in the nonparallel density gradient and fast electron current at the interfaces of a nanolayered target. A general formula for the self-generated magnetic field is found, which closely agrees with the simulation scaling over the relevant intensity range. The result is beneficial to the experimental designs for the interaction of the laser pulse with the nanostructured arrays to improve laser-to-electron energy coupling and the quality of forward hot electrons.

中国激光微信矩阵
补充资料

DOI:10.1017/hpl.2020.16

所属栏目:Research Articles

基金项目:This work was supported by the Science Challenge Project (No. TZ2016005), NSAF (No. U1730449), the National Natural Science Foundation of China (Nos. 11575030 and 11975055) and the National Key Programme for S&T Research and Development in China (No. 2016YFA0401100). The authors are grateful for the fruitful discussions with X. X. Yan and P. L. Yao.

收稿日期:2019-12-17

录用日期:2020-03-26

网络出版日期:2020-05-08

作者单位    点击查看

J. M. Tian:Graduate School, China Academy of Engineering Physics, Beijing100088, China
H. B. Cai:Institute of Applied Physics and Computational Mathematics, Beijing100094, China;Center for Applied Physics and Technology, HEDPS, and College of Engineering, Peking University, Beijing 100871, China
W. S. Zhang:Institute of Applied Physics and Computational Mathematics, Beijing100094, China
E. H. Zhang:Graduate School, China Academy of Engineering Physics, Beijing100088, China
B. Du:Institute of Applied Physics and Computational Mathematics, Beijing100094, China
S. P. Zhu:Institute of Applied Physics and Computational Mathematics, Beijing100094, China

联系人作者:H. B. Cai(Zhu_shaoping@iapcm.ac.cn); S. P. Zhu(Cai_hongbo@iapcm.ac.cn);

备注:This work was supported by the Science Challenge Project (No. TZ2016005), NSAF (No. U1730449), the National Natural Science Foundation of China (Nos. 11575030 and 11975055) and the National Key Programme for S&T Research and Development in China (No. 2016YFA0401100). The authors are grateful for the fruitful discussions with X. X. Yan and P. L. Yao.

【1】J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec and V. Malka. Nature. 444, (2006).

【2】A. Macchi, M. Borghesi and M. Passoni. Rev. Mod. Phys. 85, (2013).

【3】F. Wagner, C. Brabetz, O. Deppert, M. Roth, T. Stohlker, An. Tauschwitz, A. Tebartz, B. Zielbauer and V. Bagnoud. High Power Laser Sci. Eng. 4, (2016).

【4】S. Kawata, T. Nagashima, M. Takano, T. Izumiyama, D. Kamiyama, D. Barada, Q. Kong, Y. J. Gu, P. X. Wang, Y. Y. Ma, W. M. Wang, W. Zhang, J. Xie, H. R. Zhang and D. B. Dai. High Power Laser Sci. Eng. 2, (2014).

【5】J. Schreiber, F. Bell and Z. Najmudin. High Power Laser Sci. Eng. 2, (2014).

【6】D. Khaghani, M. Lobet, B. Borm, L. Burr, F. Gartner, L. Gremillet, L. Movsesyan, O. Rosmej, M. E. Toimil-Molares, F. Wagner and P. Neumayer. Sci. Rep. 7, (2017).

【7】M. Dozires, G. M. Petrov, P. Forestier-Colleoni, P. Campbell, K. Krushelnick, A. Maksimchuk, C. McGuffey, V. Kaymak, A. Pukhov, M. G. Capeluto, R. Hollinger, V. N. Shlyaptsev, J. J. Rocca and F. N. Beg. Plasma Phys. Control. Fusion. 61, (2019).

【8】A. Rousse, C. Rischel and J.-C. Gauthier. Rev. Mod. Phys. 73, (2001).

【9】A. PukhovA. Pukhov. Nat. Phys. 2, (2006).

【10】L. M. Chen, F. Liu, W. M. Wang, M. Kando, J. Y. Mao, L. Zhang, J. L. Ma, Y. T. Li, S. V. Bulanov, T. Tajima, Y. Kato, Z. M. Sheng, Z. Y. Wei and J. Zhang. Phys. Rev. Lett. 104, (2010).

【11】E. Brambrink, S. Baton, M. Koenig, R. Yurchak, N. Bidaut, B. Albertazzi, J. E. Cross, G. Gregori, A. Rigby, E. Falize, A. Pelka, F. Kroll, S. Pikuz, Y. Sakawa, N. Ozaki, C. Kuranz, M. Manuel, C. Li, P. Tzeferacos and D. Lamb. High Power Laser Sci. Eng. 4, (2016).

【12】V. Malka, S. Fritzler, E. Lefebvre, E. dHumieres, R. Ferrand, G. Grillon, C. Albaret, S. Meyroneinc, J.-P. Chambaret, A. Antonetti and D. Hulin. Med. Phys. 31, (2004).

【13】D. SchardtD. Schardt. Nucl. Phys. A. 787, (2007).

【14】M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry and R. J. Mason. Phys. Plasmas. 1, (1994).

【15】A. Moreau, R. Hollinger, C. Calvi, S. Wang, Y. Wang, M. G. Capeluto, A. Rockwood, A. Curtis, S. Kasdorf, V. N. Shlyaptsev, V. Kaymak, A. Pukhov and J. J. Rocca. Plasma Phys. Control. Fusion. 62, (2020).

【16】D. Sarkar, P. K. Singh, G. Cristoforetti, A. Adak, G. Chatterjee, M. Shaikh, A. D. Lad and P. Londrillo. Appl. Phys. Lett. Photonics. 2, (2017).

【17】A. Curtis, C. Calvi, J. Tinsley, R. Hollinger, V. Kaymak, A. Pukhov, S. J. Wang, A. Rockwood, Y. Wang, V. N. Shlyaptsev and J. J. Rocca. Nat. Commun. 9, (2018).

【18】M. A. Purvis, V. N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto, Y. Wang, B. M. Luther, L. Yin, S. Wang and J. J. Rocca. Nat. Photonics. 7, (2013).

【19】Z. Q. Zhao, L. H. Cao, L. F. Cao, J. Wang, W. Z. Huang, W. Jiang, Y. L. He, Y. C. Wu, B. Zhu, K. G. Dong, Y. K. Ding, B. H. Zhang, Y. Q. Gu, M. Y. Yu and X. T. He. Phys. Plasmas. 17, (2010).

【20】V. Kaymak, A. Pukhov, V. N. Shlyaptsev and J. J. Rocca. Phys. Rev. Lett. 117, (2016).

【21】L. H. Cao, Y. Q. Gu, Z. Q. Zhao, L. F. Cao, W. Z. Huang, W. M. Zhou, H. B. Cai, X. T. He, W. Yu and M. Y. Yu. Phys. Plasmas. 17, (2010).

【22】L. H. Cao, Y. Q. Gu, Z. Q. Zhao, L. F. Cao, W. Z. Huang, W. M. Zhou, X. T. He, W. Yu and M. Y. Yu. Phys. Plasmas. 17, (2010).

【23】J. Q. Yu, W. M. Zhou, L. H. Cao, Z. Q. Zhao, L. F. Cao, L. Q. Shan, D. X. Liu, X. L. J, B. Li and Y. Q. Gu. Appl. Phys. Lett. 100, (2012).

【24】L. L. Ji, S. Jiang, A. Pukhov, R. Freeman and K. Akli. High Power Laser Sci. Eng. 5, (2017).

【25】S. Jiang, L. L. Ji, H. Audesirk, K. M. George, J. Snyder, A. Krygier, P. Poole, C. Willis, R. Daskalova, E. Chowdhury, N. S. Lewis, D.W. Schumacher, A. Pukhov, R. R. Freeman and K. U. Akli. Phys. Rev. Lett. 116, (2016).

【26】P. K. Singh, G. Chatterjee, A. D. Lad, A. Adak, S. Ahmed, M. Khorasaninejad, M. M. Adachi, K. S. Karim, S. S. Saini, A. K. Sood and G. Ravindra Kumar. Appl. Phys. Lett. 100, (2012).

【27】G. Chatterjee, P. K. Singh, S. Ahmed, A. P. L. Robinson, A. D. Lad, S. Mondal, V. Narayanan, I. Srivastava, N. Koratkar, J. Pasley, A. K. Sood and G. R. Kumar. Phys. Rev. Lett. 108, (2012).

【28】E. A. Startsev, R. C. Davidson and M. Dorf. Phys. Plasmas. 16, (2009).

【29】H. B. Cai, S. P. Zhu, M. Chen, S. Z. Wu, X. T. He and K. Mima. Phys. Rev. E. 83, (2011).

【30】A. R. Bell, J. R. Davies and S. M. Guerin. Phys. Rev. E. 58, (1998).

【31】W. S. Zhang, H. B. Cai and S. P. Zhu. Phys. Plasmas. 22, (2015).

【32】A. B. Bell, A. P. L. Robinson, M. Sherlock, R. J. Kingham and W. Rozmus. Plasma Phys. Control. Fusion. 48, (2006).

【33】F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hamme, P. Lee, P. A. Norreys and M. Tatarakis. Phys. Plasmas. 4, (1997).

【34】T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell and C. P. Ridgers. Plasma Phys. Control. Fusion. 57, (2015).

引用该论文

J. M. Tian, H. B. Cai, W. S. Zhang, E. H. Zhang, B. Du, and S. P. Zhu, "Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target," High Power Laser Science and Engineering 8(2), e16 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF