首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:221013--1)

基于线结构光的核燃料棒表面裂缝尺寸测量

Surface Crack Size Detection in Nuclear Fuel Rods Based on Line Structured Light

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现复杂水下环境中裂缝尺寸的准确测量,提出了一种基于线结构光的核燃料棒表面裂缝尺寸测量方法。首先,对获取的图像进行灰度二维搜索,框选出待处理区域,再对该区域进行水平投影和一阶微分,进一步确定裂缝区域;然后,对裂缝区域进行阈值分割以缩小该区域范围,再利用种子点判断法确定出裂缝的上下边界;最后,使用最小二乘法拟合结构光中心线,用中心线方程与裂缝边界点集求交点来确定裂缝的具体位置,再将裂缝边界点转化为三维坐标进行距离采样,计算实际尺寸。实验结果表明使用该方法能精确快速测量出燃料棒表面裂缝的尺寸,并且使误差保持在0.03mm以内,可有效满足测量的便捷性和精确性。

Abstract

To accurately measure the crack size on the surface of nuclear fuel rods in a complex underwater environment, a method based on linear structured light is proposed. First, a two-dimensional grayscale search is performed on the acquired image to select the area to be processed, and then to further determine the crack area by horizontal projection and first-order differentiation. Then, threshold division of the crack area is performed to reduce the range of this area, and the upper and lower boundaries of crack are determined using the seed point judgment method. Finally, the least squares method is used to fit the centerline of structured light, the intersection point calculated by the centerline equation and the crack boundary point set is used to determine the specific location of crack, and then, the crack boundary point is converted into three-dimensional coordinates for distance sampling to calculate the actual size of the crack. Experiments demonstrate that the proposed method can accurately and quickly measure the crack size of a fuel rod with an error within 0.03mm, making this method appealing and convenient.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391.41

DOI:10.3788/LOP57.221013

所属栏目:图像处理

收稿日期:2020-03-03

修改稿日期:2020-04-17

网络出版日期:2020-11-01

作者单位    点击查看

咸凯强:东华大学机械工程学院, 上海 201620
庞静珠:东华大学机械工程学院, 上海 201620
胡俊:东华大学机械工程学院, 上海 201620

联系人作者:胡俊(hujun@dhu.edu.cn)

【1】Tang B, Kong J Y, Wu S Q. Review of surface defect detection based on machine vision [J]. Journal of Image and Graphics. 2017, 22(12): 1640-1663.
汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述 [J]. 中国图象图形学报. 2017, 22(12): 1640-1663.
Tang B, Kong J Y, Wu S Q. Review of surface defect detection based on machine vision [J]. Journal of Image and Graphics. 2017, 22(12): 1640-1663.
汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述 [J]. 中国图象图形学报. 2017, 22(12): 1640-1663.

【2】Hu C X. Simulation research of ultrasonic inspection of primary tube seat weld in nuclear power plants [J]. Nuclear Power Engineering. 2020, 41(2): 145-149.
胡晨旭. 核电厂一回路管座焊缝超声波检测仿真研究 [J]. 核动力工程. 2020, 41(2): 145-149.
Hu C X. Simulation research of ultrasonic inspection of primary tube seat weld in nuclear power plants [J]. Nuclear Power Engineering. 2020, 41(2): 145-149.
胡晨旭. 核电厂一回路管座焊缝超声波检测仿真研究 [J]. 核动力工程. 2020, 41(2): 145-149.

【3】Sun Y S, Li M, Liu H, et al. Bearing fault detection based on acoustic emission technique [J]. Nondestructive Testing Technologying. 2015, 37(8): 17-20, 60.
孙永生, 李猛, 刘恒, 等. 基于声发射检测技术的滚动轴承缺陷检测 [J]. 无损检测. 2015, 37(8): 17-20, 60.

【4】Wen Y Z. Water conservancy construction based on distributed optical fiber sensing detection method Analysis of concrete crack detection effect [J]. Technical Supervision in Water Resources. 2019, 27(2): 18-20, 154.
文玉忠. 基于分布式光纤传感检测法的水利施工混凝土裂缝检测效果分析 [J]. 水利技术监督. 2019, 27(2): 18-20, 154.
Wen Y Z. Water conservancy construction based on distributed optical fiber sensing detection method Analysis of concrete crack detection effect [J]. Technical Supervision in Water Resources. 2019, 27(2): 18-20, 154.
文玉忠. 基于分布式光纤传感检测法的水利施工混凝土裂缝检测效果分析 [J]. 水利技术监督. 2019, 27(2): 18-20, 154.

【5】Lu R S, Wu A, Zhang T D, et al. Review on automated optical (visual) inspection and its applications in defect detection [J]. Acta Optica Sinica. 2018, 38(8): 0815002.
卢荣胜, 吴昂, 张腾达, 视觉, 等. 检测技术及其在缺陷检测中的应用综述 [J]. 光学学报. 2018, 38(8): 0815002.

【6】Liu D, Zhang B, Li H X, et al. Detection of micro-cylinder end face defect in complex background [J]. Laser & Optoelectronics Progress. 2018, 55(6): 061006.
刘丹, 张斌, 李慧娴, 等. 复杂背景下微小圆柱端面缺陷检测方法研究 [J]. 激光与光电子学进展. 2018, 55(6): 061006.

【7】Gao J Q, Liu G H. 3D defect detection technology for rail surface with multi-camera line structure light Machinery Design & Manufacture[J]. 0, 2017(3): 170-172, 176.
高军强, 刘桂华. 多摄像机线结构光的钢轨表面三维缺陷检测 机械设计与制造[J]. 0, 2017(3): 170-172, 176.

【8】Tsai D M, Hsieh C Y. Automated surface inspection for directional textures [J]. Image and Vision Computing. 1999, 18(1): 49-62.

【9】Li S H, Zhou Y T, Wang D, et al. Surface defect detection of polyvinyl chloride pipes based on machine vision [J]. Laser & Optoelectronics Progress. 2019, 56(13): 131006.
李书华, 周亚同, 王丹, 等. 基于机器视觉的聚氯乙烯管材表面缺陷检测 [J]. 激光与光电子学进展. 2019, 56(13): 131006.

【10】Alippi C, Casagrande E, Scotti F, et al. Composite real-time image processing for railways track profile measurement [J]. IEEE Transactions on Instrumentation and Measurement. 2000, 49(3): 559-564.

【11】Wang Y, Han J W, Jin C Y, et al. In-pipe defects detection and reconstruction based on circle structured light [J]. Journal of Applied Optics. 2014, 35(3): 441-445.
王颖, 韩静文, 金翠云, 等. 圆结构光视觉三维点管道缺陷检测及重构 [J]. 应用光学. 2014, 35(3): 441-445.

【12】Liu T T, Wang P G, Zhang N. Subpixel defect detection in highly reflective workpieces based on zernike moments [J]. Laser & Optoelectronics Progress. 2019, 56(12): 121203.
刘婷婷, 王培光, 张娜. 基于Zernike矩亚像素的高反光金属工件缺陷检测 [J]. 激光与光电子学进展. 2019, 56(12): 121203.

【13】Wang Y D, Yu Z J, Bai B, et al. Research on image processing based subway tunnel crack identification algorithm [J]. Chinese Journal of Scientific Instrument. 2014, 35(7): 1489-1496.
王耀东, 余祖俊, 白彪, 等. 基于图像处理的地铁隧道裂缝识别算法研究 [J]. 仪器仪表学报. 2014, 35(7): 1489-1496.

【14】Su J H, Liu S L. Measure system of surface flaw and morphology analysis of cylindrical high precision parts [J]. Laser & Optoelectronics Progress. 2014, 51(4): 041202.
苏俊宏, 刘胜利. 圆柱型高精密零件表面缺陷检测及形貌分析 [J]. 激光与光电子学进展. 2014, 51(4): 041202.

【15】Li K B, Yu H Y, Zhou S J. Surface scratch detection of mechanical parts based on morphological features [J]. Acta Optica Sinica. 2018, 38(8): 0815027.
李克斌, 余厚云, 周申江. 基于形态学特征的机械零件表面划痕检测 [J]. 光学学报. 2018, 38(8): 0815027.

【16】Liu Z W. Research on underwater detection device for nuclear fuel assembly defects based on line structured light [D]. Shanghai: Donghua University. 2019, 17-21.
刘志伟. 基于线结构光的核燃料组件缺陷水下检测装置研究 [D]. 上海: 东华大学. 2019, 17-21.

【17】A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics. 1979, 9(1): 62-66.

引用该论文

Xian Kaiqiang,Pang Jingzhu,Hu Jun. Surface Crack Size Detection in Nuclear Fuel Rods Based on Line Structured Light[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221013

咸凯强,庞静珠,胡俊. 基于线结构光的核燃料棒表面裂缝尺寸测量[J]. 激光与光电子学进展, 2020, 57(22): 221013

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF