首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:220901--1)

连续场景太赫兹数字全息三维重建图像的参数影响

Influence of Parameters on Terahertz Digital Holography 3D Image Reconstruction of a Continuous Scene

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用压缩感知太赫兹数字全息技术进行连续场景的三维重建,其中,影响重建结果的控制参数主要有迭代次数和稀疏限制参数。首先,仿真重建了三个层面的连续场景与分立场景全息图,并进行了对比分析。其次,改变迭代次数,给出重建结果随稀疏限制参数的变化曲线,找到本次实验的最佳控制参数。仿真结果表明,当重建平面数目为4,迭代次数为300次,稀疏限制参数为不大于0.02时,重建图像的质量较好。

Abstract

Compressed sensing terahertz digital holography technology is utilized to reconstruct three-dimensional images of a continuous scene. The control parameters affecting the reconstruction results primarily include the numbers of iterations and the sparse limit parameter. First, the holograms of a continuous scene and a discrete scene on three dimensions were reconstructed, simulated and compared. Then, the number of iterations was changed, and the reconstruction results varying with sparse limit parameters was used to find the best control parameters. Simulation results show that the reconstructed image quality is optimal when the number of reconstruction planes is 4, number of iterations is 300, and sparse restriction parameter is not greater than 0.02.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TN249

DOI:10.3788/LOP57.220901

所属栏目:全息

基金项目:国家自然科学基金;

收稿日期:2020-03-30

修改稿日期:2020-04-03

网络出版日期:2020-11-01

作者单位    点击查看

林平:哈尔滨工业大学可调谐激光技术国家级重点实验室, 黑龙江 哈尔滨 150080
李琦:哈尔滨工业大学可调谐激光技术国家级重点实验室, 黑龙江 哈尔滨 150080
申作春:哈尔滨工业大学可调谐激光技术国家级重点实验室, 黑龙江 哈尔滨 150080

联系人作者:林平(liqi2013@hit.edu.cn); 李琦(liqi2013@hit.edu.cn);

备注:国家自然科学基金;

【1】Li W J, Wang T Y, Zhou Y, et al. Terahertz non-destructive inspection of air defect within adhesive layers of multi-layer bonded structure [J]. Acta Optica Sinica. 2017, 37(1): 0111002.
李文军, 王天一, 周宇, 等. 多层胶接结构胶层空气缺陷的太赫兹无损检测 [J]. 光学学报. 2017, 37(1): 0111002.

【2】Peng Y, Shi C J, Zhu Y M, et al. Qualitative and quantitative analysis algorithms based on terahertz spectroscopy for biomedical detection [J]. Chinese Journal of Lasers. 2019, 46(6): 0614002.
彭滟, 施辰君, 朱亦鸣, 等. 太赫兹光谱技术在生物医学检测中的定性与定量分析算法 [J]. 中国激光. 2019, 46(6): 0614002.

【3】Wang B, Wang X K, Yu Y, et al. Terahertz linear array fast scanning imaging [J]. Chinese Journal of Lasers. 2019, 46(6): 0614029.
王彪, 王新柯, 俞跃, 等. 太赫兹线阵快速扫描成像 [J]. 中国激光. 2019, 46(6): 0614029.

【4】Wang Y Y, Chen L Y, Xu D G, et al. Three-dimensional reconstruction of rat brain trauma based on terahertz imaging [J]. Acta Optica Sinica. 2019, 39(3): 0317002.
王与烨, 陈霖宇, 徐德刚, 等. 基于太赫兹波成像的鼠脑创伤三维重构 [J]. 光学学报. 2019, 39(3): 0317002.

【5】Han B, Xiao W, Pan F, et al. Optimization of space sampling distance of phase retrieval algorithm for in-line digital holography [J]. Laser & Optoelectronics Progress. 2012, 49(12): 120903.
韩冰, 肖文, 潘锋, 等. 同轴数字全息相位恢复算法采样距离优化研究 [J]. 激光与光电子学进展. 2012, 49(12): 120903.

【6】Hu J Q, Li Q, Zhou Y. Support-domain constrained phase retrieval algorithms in terahertz in-line digital holography reconstruction of a nonisolated amplitude object [J]. Applied Optics. 2016, 55(2): 379-386.Hu J Q, Li Q, Zhou Y. Support-domain constrained phase retrieval algorithms in terahertz in-line digital holography reconstruction of a nonisolated amplitude object [J]. Applied Optics. 2016, 55(2): 379-386.

【7】Li Q, Wu Z, Xu J S, et al. Phase recovery algorithm based on pupil diversity [J]. Acta Optica Sinica. 2019, 39(6): 0626001.
李倩, 吴桢, 徐节速, 等. 基于瞳面差异的相位复原算法 [J]. 光学学报. 2019, 39(6): 0626001.

【8】Li Q, Li Y D. Continuous-wave 2.52 Terahertz Gabor inline compressive holographic tomography [J]. Applied Physics B. 2014, 117(2): 585-596.Li Q, Li Y D. Continuous-wave 2.52 Terahertz Gabor inline compressive holographic tomography [J]. Applied Physics B. 2014, 117(2): 585-596.

【9】Yuan J, Li Q, Gong W P. Influences of compressive sensing 3D reconstruction algorithm control parameters on terahertz digital holography reconstruction [J]. Chinese Journal of Lasers. 2018, 45(10): 1014001.
袁静, 李琦, 巩文盼. 压缩感知三维重建算法控制参数对太赫兹数字全息再现的影响 [J]. 中国激光. 2018, 45(10): 1014001.

【10】Xue K, Li Q, Li Y D, et al. Continuous-wave terahertz in-line digital holography [J]. Optics Letters. 2012, 37(15): 3228-3230.Xue K, Li Q, Li Y D, et al. Continuous-wave terahertz in-line digital holography [J]. Optics Letters. 2012, 37(15): 3228-3230.

【11】Brady D J, Choi K, Marks D L, et al. Compressive holography [J]. Optics Express. 2009, 17(15): 13040-13049.

【12】Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration [J]. IEEE Transactions on Image Processing. 2007, 16(12): 2992-3004.

【13】Wang Z, Bovik A C. A universal image quality index [J]. IEEE Signal Processing Letters. 2002, 9(3): 81-84.

【14】Zhou W, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing. 2004, 13(4): 600-612.

引用该论文

Lin Ping,Li Qi,Shen Zuochun. Influence of Parameters on Terahertz Digital Holography 3D Image Reconstruction of a Continuous Scene[J]. Laser & Optoelectronics Progress, 2020, 57(22): 220901

林平,李琦,申作春. 连续场景太赫兹数字全息三维重建图像的参数影响[J]. 激光与光电子学进展, 2020, 57(22): 220901

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF