Photonics Research, 2021, 9 (1): 01000001, Published Online: Dec. 4, 2020   

All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories Download: 580次

Author Affiliations
Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Madrid 28040, Spain
Abstract
Increasing interest has been drawn to optical manipulation of metal (plasmonic) nanoparticles due to their unique response on electromagnetic radiation, prompting numerous applications in nanofabrication, photonics, sensing, etc. The familiar point-like laser tweezers rely on the exclusive use of optical confinement forces that allow stable trapping of a single metal nanoparticle in 3D. Simultaneous all-optical (contactless) confinement and motion control of single and multiple metal nanoparticles is one of the major challenges to be overcome. This article reports and provides guidance on mastering a sophisticated manipulation technique harnessing confinement and propulsion forces, enabling simultaneous all-optical confinement and motion control of nanoparticles along 3D trajectories. As an example, for the first time to our knowledge, programmable transport of gold and silver nanospheres with a radius of 50 and 30 nm, respectively, along 3D trajectories tailored on demand, is experimentally demonstrated. It has been achieved by an independent design of both types of optical forces in a single-beam laser trap in the form of a reconfigurable 3D curve. The controlled motion of multiple nanoparticles, far away from chamber walls, allows studying induced electrodynamic interactions between them, such as plasmonic coupling, observed in the presented experiments. The independent control of optical confinement and propulsion forces provides enhanced flexibility to manipulate matter with light, paving the way to new applications involving the formation, sorting, delivery, and assembling of nanostructures.

José A. Rodrigo, Mercedes Angulo, Tatiana Alieva. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories[J]. Photonics Research, 2021, 9(1): 01000001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!