首页 > 论文 > Photonics Research > 9卷 > 1期(pp:1-12)

All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Increasing interest has been drawn to optical manipulation of metal (plasmonic) nanoparticles due to their unique response on electromagnetic radiation, prompting numerous applications in nanofabrication, photonics, sensing, etc. The familiar point-like laser tweezers rely on the exclusive use of optical confinement forces that allow stable trapping of a single metal nanoparticle in 3D. Simultaneous all-optical (contactless) confinement and motion control of single and multiple metal nanoparticles is one of the major challenges to be overcome. This article reports and provides guidance on mastering a sophisticated manipulation technique harnessing confinement and propulsion forces, enabling simultaneous all-optical confinement and motion control of nanoparticles along 3D trajectories. As an example, for the first time to our knowledge, programmable transport of gold and silver nanospheres with a radius of 50 and 30 nm, respectively, along 3D trajectories tailored on demand, is experimentally demonstrated. It has been achieved by an independent design of both types of optical forces in a single-beam laser trap in the form of a reconfigurable 3D curve. The controlled motion of multiple nanoparticles, far away from chamber walls, allows studying induced electrodynamic interactions between them, such as plasmonic coupling, observed in the presented experiments. The independent control of optical confinement and propulsion forces provides enhanced flexibility to manipulate matter with light, paving the way to new applications involving the formation, sorting, delivery, and assembling of nanostructures.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.408680

所属栏目:Physical Optics

基金项目:Ministerio de Ciencia, Innovación y Universidades10.13039/100014440;

收稿日期:2020-08-28

录用日期:2020-10-22

网络出版日期:2020-10-23

作者单位    点击查看

José A. Rodrigo:Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Madrid 28040, Spain
Mercedes Angulo:Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Madrid 28040, Spain
Tatiana Alieva:Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Madrid 28040, Spain

联系人作者:José A. Rodrigo(jarmar@fis.ucm.es)

备注:Ministerio de Ciencia, Innovación y Universidades10.13039/100014440;

【1】P. M. Bendix, L. Jauffred, K. Norregaard and L. B. Oddershede. Optical trapping of nanoparticles and quantum dots. IEEE J. Sel. Top. Quantum Electron. 20, (2014).

【2】A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann and F. J?ckel. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Nanoscale. 6, 4458-4474(2014).

【3】P. Zemánek, G. Volpe, A. Joná? and O. Brzobohaty. Perspective on light-induced transport of particles: from optical forces to phoretic motion. Adv. Opt. Photon. 11, 577-678(2019).

【4】M. Dienerowitz, M. Mazilu and K. Dholakia. Optical manipulation of nanoparticles: a review. J. Nanophoton. 2, (2008).

【5】C. BradacC. Bradac. Nanoscale optical trapping: a review. Adv. Opt. Mater. 6, (2018).

【6】A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288-290(1986).

【7】K. Svoboda and S. M. Block. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930-932(1994).

【8】S. N. S. Reihani and L. B. Oddershede. Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. Opt. Lett. 32, 1998-2000(2007).

【9】F. Hajizadeh and S. N. S. Reihani. Optimized optical trapping of gold nanoparticles. Opt. Express. 18, 551-559(2010).

【10】A. Ohlinger, S. Nedev, A. A. Lutich and J. Feldmann. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett. 11, 1770-1774(2011).

【11】L. Chuntonov and G. Haran. Trimeric plasmonic molecules: the role of symmetry. Nano Lett. 11, 2440-2445(2011).

【12】M. Blattmann and A. Rohrbach. Plasmonic coupling dynamics of silver nanoparticles in an optical trap. Nano Lett. 15, 7816-7821(2015).

【13】H. Kermani and A. Rohrbach. Orientation-control of two plasmonically coupled nanoparticles in an optical trap. ACS Photon. 5, 4660-4667(2018).

【14】B. Sun, Y. Roichman and D. D. G. Grier. Theory of holographic optical trapping. Opt. Express. 16, 15765-15776(2008).

【15】Y. Y. Roichman, B. Sun, Y. Y. Roichman, J. Amato-Grill and D. G. Grier. Optical forces arising from phase gradients. Phys. Rev. Lett. 100, (2008).

【16】J. A. Rodrigo and T. Alieva. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica. 2, 812-815(2015).

【17】D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim and C.-W. W. Qiu. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6, (2017).

【18】P. Figliozzi, N. Sule, Z. Yan, Y. Bao, S. Burov, S. K. Gray, S. A. Rice, S. Vaikuntanathan and N. F. Scherer. Driven optical matter: dynamics of electrodynamically coupled nanoparticles in an optical ring vortex. Phys. Rev. E. 95, (2017).

【19】P. Figliozzi, C. W. Peterson, S. A. Rice and N. F. Scherer. Direct visualization of barrier crossing dynamics in a driven optical matter system. ACS Nano. 12, 5168-5175(2018).

【20】Y. Yifat, D. Coursault, C. W. Peterson, J. Parker, Y. Bao, S. K. Gray, S. A. Rice and N. F. Scherer. Reactive optical matter: light-induced motility in electrodynamically asymmetric nanoscale scatterers. Light Sci. Appl. 7, (2018).

【21】C. W. Peterson, J. Parker, S. A. Rice and N. F. Scherer. Controlling the dynamics and optical binding of nanoparticle homodimers with transverse phase gradients. Nano Lett. 19, 897-903(2019).

【22】J. A. Rodrigo and T. Alieva. Light-driven transport of plasmonic nanoparticles on demand. Sci. Rep. 6, (2016).

【23】K. Dholakia and P. Zemánek. Colloquium: gripped by light: optical binding. Rev. Mod. Phys. 82, 1767-1791(2010).

【24】Z. Yan, R. A. Shah, G. Chado, S. K. Gray, M. Pelton and N. F. Scherer. Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. ACS Nano. 7, 1790-1802(2013).

【25】Z. Yan, S. K. Gray and N. F. Scherer. Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters. Nat. Commun. 5, (2014).

【26】Z. Yan, M. Sajjan and N. F. Scherer. Fabrication of a material assembly of silver nanoparticles using the phase gradients of optical tweezers. Phys. Rev. Lett. 114, (2015).

【27】F. Han, J. Parker, Y. Yifat, C. Peterson, S. Gray, N. Scherer and Z. Yan. Crossover from positive to negative optical torque in mesoscale optical matter. Nat. Commun. 9, (2018).

【28】J. A. Rodrigo, M. Angulo and T. Alieva. Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles. Opt. Express. 26, 18608-18620(2018).

【29】P. C. Chaumet and M. Nieto-Vesperinas. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 25, 1065-1067(2000).

【30】V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán and F. J. García de Abajo. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792-1805(2008).

【31】J. A. Rodrigo and T. Alieva. Polymorphic beams and Nature inspired circuits for optical current. Sci. Rep. 6, (2016).

【32】A. M. Amaral, E. A. Filho and C. B. de Araújo. Characterization of topological charge and orbital angular momentum of shaped optical vortices. Opt. Express. 22, 30315-30324(2014).

【33】L. Shao and M. K?ll. Light-driven rotation of plasmonic nanomotors. Adv. Funct. Mater. 28, (2018).

【34】N. Sule, Y. Yifat, S. K. Gray and N. F. Scherer. Rotation and negative torque in electrodynamically bound nanoparticle dimers. Nano Lett. 17, 6548-6556(2017).

【35】B. Leimkuhler and C. Matthews. Rational construction of stochastic numerical methods for molecular sampling. Appl. Math. Res. Express. 2013, 34-56(2013).

【36】N. Sule, S. A. Rice, S. K. Gray and N. F. Scherer. An electrodynamics-Langevin dynamics (ED-LD) approach to simulate metal nanoparticle interactions and motion. Opt. Express. 23, 29978-29992(2015).

【37】M. Sachs, B. Leimkuhler and V. Danos. Langevin dynamics with variable coefficients and nonconservative forces: from stationary states to numerical methods. Entropy. 19, (2017).

【38】R. ZwanzigR. Zwanzig. Nonequilibrium Statistical Mechanics. : Oxford University, (2001).

【39】J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel and I. Moreno. Encoding amplitude information onto phase-only filters. Appl. Opt. 38, 5004-5013(1999).

【40】J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte and K. W. Eliceiri. Trackmate: an open and extensible platform for single-particle tracking. Methods. 115, 80-90(2017).

【41】J. A. Rodrigo, J. M. Soto and T. Alieva. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. Biomed. Opt. Express. 8, 5507-5517(2017).

【42】G. Baffou, P. Berto, E. B. Ure?a, R. Quidant, S. Monneret, J. Polleux and H. Rigneault. Photoinduced heating of nanoparticle arrays. ACS Nano. 7, 6478-6488(2013).

【43】A. Yevick, D. B. Ruffner and D. G. Grier. Tractor beams in the Rayleigh limit. Phys. Rev. A. 93, (2016).

【44】E. R. Shanblatt and D. G. Grier. Extended and knotted optical traps in three dimensions. Opt. Express. 19, 5833-5838(2011).

【45】J. A. Rodrigo, M. Angulo and T. Alieva. Programmable optical transport of particles in knot circuits and networks. Opt. Lett. 43, 4244-4247(2018).

引用该论文

José A. Rodrigo, Mercedes Angulo, and Tatiana Alieva, "All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories," Photonics Research 9(1), 1-12 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF