首页 > 论文 > Photonics Research > 9卷 > 1期(pp:81-87)

Digital quantum simulation of Floquet topological phases with a solid-state quantum simulator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Harnessing the dynamics of complex quantum systems is an area of much interest and a quantum simulator has emerged as a promising platform to probe exotic topological phases. Since the flexibility offered by various controllable quantum systems has helped gain insight into the quantum simulation of such complicated problems, an analog quantum simulator has recently shown its feasibility to tackle the problems of exploring topological phases. However, digital quantum simulation and the detection of topological phases still remain elusive. Here, we develop and experimentally realize the digital quantum simulation of topological phases with a solid-state quantum simulator at room temperature. Distinct from previous works dealing with static topological phases, the topological phases emulated here are Floquet topological phases. Furthermore, we also illustrate the procedure of digitally simulating a quantum quench and observing the nonequilibrium dynamics of Floquet topological phases. Using a quantum quench, the 0- and π-energy topological invariants are unambiguously detected through measuring time-averaged spin polarizations. We believe our experiment opens up a new avenue to digitally simulate and detect Floquet topological phases with fast-developed programmable quantum simulators.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.404163

所属栏目:Research Articles

基金项目:National Key Research and Development Program of China10.13039/501100012166; Newton Fund10.13039/100010897; Fund for Shanxi 1331 Project Key Subjects Construction and 111 Project; PCSIRT; National Natural Science Foundation of China10.13039/501100001809; Fundamental Research Funds for the Central Universities10.13039/501100012226; Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices;

收稿日期:2020-07-30

录用日期:2020-11-15

网络出版日期:2020-11-18

作者单位    点击查看

Bing Chen:School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China;State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Shuo Li:Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025, USA
Xianfei Hou:School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
Feifei Ge:School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
Feifei Zhou:School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
Peng Qian:School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
Feng Mei:State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;e-mail: meifeng@sxu.edu.cn
Suotang Jia:State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Nanyang Xu:School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China;e-mail: nyxu@hfut.edu.cn
Heng Shen:State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK;e-mail: hengshen@nbi.dk

联系人作者:Feng Mei(meifeng@sxu.edu.cn); Nanyang Xu(nyxu@hfut.edu.cn); Heng Shen(hengshen@nbi.dk);

备注:National Key Research and Development Program of China10.13039/501100012166; Newton Fund10.13039/100010897; Fund for Shanxi 1331 Project Key Subjects Construction and 111 Project; PCSIRT; National Natural Science Foundation of China10.13039/501100001809; Fundamental Research Funds for the Central Universities10.13039/501100012226; Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices;

【1】R. Moessner and S. L. Sondhi. Equilibration and order in quantum Floquet matter. Nat. Phys. 13, 424-428(2017).

【2】T. Kitagawa, E. Berg, M. Rudner and E. Demler. Topological characterization of periodically driven quantum systems. Phys. Rev. B. 82, (2010).

【3】M. S. Rudner, N. H. Lindner, E. Berg and M. Levin. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X. 3, (2013).

【4】N. H. Lindner, G. Refael and V. Galitski. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490-495(2011).

【5】L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin and P. Zoller. Majorana fermions in equilibrium and in driven cold-atom quantum wires. Phys. Rev. Lett. 106, (2011).

【6】M. Thakurathi, A. A. Patel, D. Sen and A. Dutta. Floquet generation of Majorana end modes and topological invariants. Phys. Rev. B. 88, (2013).

【7】A. Kundu and B. Seradjeh. Transport signatures of Floquet Majorana fermions in driven topological superconductors. Phys. Rev. Lett. 111, (2013).

【8】J. K. Asbóth, B. Tarasinski and P. Delplace. Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems. Phys. Rev. B. 90, (2014).

【9】V. D. Lago, M. Atala and L. E. F. Torres. Floquet topological transitions in a driven one-dimensional topological insulator. Phys. Rev. A. 92, (2015).

【10】M. FruchartM. Fruchart. Complex classes of periodically driven topological lattice systems. Phys. Rev. B. 93, (2016).

【11】S. LloydS. Lloyd. Universal quantum simulators. Science. 273, 1073-1078(1996).

【12】I. Buluta and F. Nori. Quantum simulators. Science. 326, 108-111(2009).

【13】I. Bloch, J. Dalibard and W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, (2008).

【14】M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De) and U. Sen. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243-379(2007).

【15】C. Gross and I. Bloch. Quantum simulations with ultracold atoms in optical lattices. Science. 357, 995-1001(2017).

【16】R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nat. Phys. 8, 277-284(2012).

【17】K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G.-D. Lin, L.-M. Duan and C. Monroe. Quantum simulation of frustrated Ising spins with trapped ions. Nature. 465, 590-593(2010).

【18】A. A. Houck, H. E. Türeci and J. Koch. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292-299(2012).

【19】F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven and J. M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature. 574, 505-510(2019).

【20】A. Aspuru-Guzik and P. Walther. Photonic quantum simulators. Nat. Phys. 8, 285-291(2012).

【21】N. Goldman, J. C. Budich and P. Zoller. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639-645(2016).

【22】D.-W. Zhang, Y.-Q. Zhu, Y. X. Zhao, H. Yan and S.-L. Zhu. Topological quantum matter with cold atoms. Adv. Phys. 67, 253-402(2019).

【23】N. R. Cooper, J. Dalibard and I. B. Spielman. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, (2019).

【24】F. Kong, C. Ju, Y. Liu, C. Lei, M. Wang, X. Kong, P. Wang, P. Huang, Z. Li, F. Shi, L. Jiang and J. Du. Direct measurement of topological numbers with spins in diamond. Phys. Rev. Lett. 117, (2016).

【25】W. Ma, L. Zhou, Q. Zhang, M. Li, C. Cheng, J. Geng, X. Rong, F. Shi, J. Gong and J. Du. Experimental observation of a generalized Thouless pump with a single spin. Phys. Rev. Lett. 120, (2018).

【26】W. Lian, S.-T. Wang, S. Lu, Y. Huang, F. Wang, X. Yuan, W. Zhang, X. Ouyang, X. Wang, X. Huang, L. He, X. Chang, D.-L. Deng and L. Duan. Machine learning topological phases with a solid-state quantum simulator. Phys. Rev. Lett. 122, (2019).

【27】J. S. Xu, K. Sun, Y. J. Han, C. F. Li, J. K. Pachos and G. C. Guo. Simulating the exchange of Majorana zero modes with a photonic system. Nat. Commun. 7, (2016).

【28】Y. Wang, Y. H. Lu, F. Mei, J. Gao, Z. M. Li, H. Tang, S. L. Zhu, S. Jia and X. M. Jin. Direct observation of topology from single-photon dynamics on a photonic chip. Phys. Rev. Lett. 122, (2019).

【29】J. S. Xu, K. Sun, J. K. Pachos, Y. J. Han, C. F. Li and G. C. Guo. Photonic implementation of Majorana-based Berry phases. Sci. Adv. 4, (2018).

【30】W. Cai, J. Han, F. Mei, Y. Xu, Y. Ma, X. Li, H. Wang, Y. P. Song, Z.-Y. Xue, Z.-Q. Yin, S. Jia and L. Sun. Observation of topological magnon insulator states in a superconducting circuit. Phys. Rev. Lett. 123, (2019).

【31】A. D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P. I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A. Y. Smirnov, L. J. Swenson, M. H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M. W. Johnson, J. Hilton and M. H. Amin. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature. 560, 456-460(2018).

【32】E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin, N. Y. Yao and I. Siddiqi. Observing topological invariants using quantum walks in superconducting circuits. Phys. Rev. X. 7, (2017).

【33】M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M. Sandberg, J. Gao, M. R. Vissers, D. P. Pappas, A. Polkovnikov and K. W. Lehnert. Measuring a topological transition in an artificial spin-1/2 system. Phys. Rev. Lett. 113, (2014).

【34】P. Roushan, C. Neill, Y. Chen, M. Kolodrubetz, C. Quintana, N. Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, A. Polkovnikov, A. N. Cleland and J. M. Martinis. Observation of topological transitions in interacting quantum circuits. Nature. 515, 241-244(2014).

【35】Y. P. Zhong, D. Xu, P. Wang, C. Song, Q. J. Guo, W. X. Liu, K. Xu, B. X. Xia, C.-Y. Lu, S. Han, J.-W. Pan and H. Wang. Emulating anyonic fractional statistical behavior in a superconducting quantum circuit. Phys. Rev. Lett. 117, (2016).

【36】T. Wang, Z. Zhang, L. Xiang, Z. Gong, J. Wu and Y. Yin. Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories. Sci. China Phys. Mech. Astron. 61, (2018).

【37】X. Tan, D.-W. Zhang, Q. Liu, G. Xue, H.-F. Yu, Y.-Q. Zhu, H. Yan, S.-L. Zhu and Y. Yu. Topological Maxwell metal bands in a superconducting qutrit. Phys. Rev. Lett. 120, (2018).

【38】C. Song, D. Xu, P. Zhang, J. Wang, Q. Guo, W. Liu, K. Xu, H. Deng, K. Huang, D. Zheng, S.-B. Zheng, H. Wang, X. Zhu, C.-Y. Lu and J.-W. Pan. Demonstration of topological robustness of anyonic braiding statistics with a superconducting quantum circuit. Phys. Rev. Lett. 121, (2018).

【39】X. Tan, Y. X. Zhao, Q. Liu, G. Xue, H. F. Yu, Z. D. Wang and Y. Yu. Simulation and manipulation of tunable Weyl-semimetal bands using superconducting quantum circuits. Phys. Rev. Lett. 122, (2019).

【40】B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Z?hringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt and C. F. Roos. Universal digital quantum simulation with trapped ions. Science. 334, 57-61(2011).

【41】M. Müller, S. Diehla, G. Pupillo and P. Zoller. Engineered open systems and quantum simulations with atoms and ions. Adv. Atom. Mol. Opt. Phys. 61, 1-80(2012).

【42】I. M. Georgescu, S. Ashhab and F. Nori. Quantum simulation. Rev. Mod. Phys. 86, 153-185(2014).

【43】L. Lamata, A. Parra-Rodriguez, M. Sanz and E. Solano. Digital-analog quantum simulations with superconducting circuits. Adv. Phys. X. 3, (2018).

【44】H. Weimer, M. Müller, I. Lesanovsky, P. Zoller and H. P. Büchler. A Rydberg quantum simulator. Nat. Phys. 6, 382-388(2010).

【45】A. Mezzacapo, J. Casanova, L. Lamata and E. Solano. Digital quantum simulation of the Holstein model in trapped ions. Phys. Rev. Lett. 109, (2012).

【46】J. Casanova, A. Mezzacapo, L. Lamata and E. Solano. Quantum simulation of interacting fermion lattice models in trapped ions. Phys. Rev. Lett. 108, (2012).

【47】U. L. Heras, A. Mezzacapo, L. Lamata, S. Filipp, A. Wallraff and E. Solano. Digital quantum simulation of spin systems in superconducting circuits. Phys. Rev. Lett. 112, (2014).

【48】R. Barends, L. Lamata, J. Kelly, L. García-álvarez, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, E. Solano and J. M. Martinis. Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 6, (2015).

【49】Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A. Poto?nik, A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp and A. Wallraff. Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X. 5, (2015).

【50】R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. L. Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven and J. M. Martinis. Digitized adiabatic quantum computing with a superconducting circuit. Nature. 534, 222-226(2016).

【51】C. Ju, C. Lei, X. Xu, D. Culcer, Z. Zhang and J. Du. NV-center-based digital quantum simulation of a quantum phase transition in topological insulators. Phys. Rev. B. 89, (2014).

【52】T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson and V. V. Dobrovitski. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature. 484, 82-86(2012).

【53】Y. Wu, Y. Wang, X. Qin, X. Rong and J. Du. A programmable two-qubit solid-state quantum processor under ambient conditions. npj Quantum Inf. 5, (2019).

【54】Q. Cheng, Y. Pan, H. Wang, C. Zhang, D. Yu, A. Gover, H. Zhang, T. Li, L. Zhou and S. Zhu. Observation of anomalous π modes in photonic Floquet engineering. Phys. Rev. Lett. 122, (2019).

【55】A. Stern and N. H. Lindner. Topological quantum computation-from basic concepts to first experiments. Science. 339, 1179-1184(2013).

【56】C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. D. Sarma. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, (2008).

【57】L. Zhou and J. Gong. Floquet topological phases in a spin-1/2 double kicked rotor. Phys. Rev. A. 97, (2018).

【58】L. Zhou and J. Gong. Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states. Phys. Rev. B. 98, (2018).

【59】. (0).

【60】B. Chen, J. Geng, F. Zhou, L. Song, H. Shen and N. Xu. Quantum state tomography of a single electron spin in diamond with Wigner function reconstruction. Appl. Phys. Lett. 114, (2019).

【61】L. Zhang, L. Zhang, S. Niu and X.-J. Liu. Dynamical classification of topological quantum phases. Sci. Bull. 63, 1385-1391(2018).

【62】N. H. Lindner, D. L. Bergman, G. Refael and V. Galitski. Topological Floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B. 87, (2013).

【63】D. Carpentier, P. Delplace, M. Fruchart and K. Gawedzki. Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114, (2015).

【64】T. Schuster, S. Gazit, J. E. Moore and N. Y. Yao. Floquet Hopf insulators. Phys. Rev. Lett. 123, (2019).

【65】Y. Hu, P. Zoller and J. C. Budich. Dynamical buildup of a quantized Hall response from nontopological states. Phys. Rev. Lett. 117, (2016).

【66】J. H. Wilson, J. C. W. Song and G. Refael. Remnant geometric Hall response in a quantum quench. Phys. Rev. Lett. 117, (2016).

【67】F. N. Unal, E. J. Mueller and M. O. Oktel. Nonequilibrium fractional Hall response after a topological quench. Phys. Rev. A. 94, (2016).

引用该论文

Bing Chen, Shuo Li, Xianfei Hou, Feifei Ge, Feifei Zhou, Peng Qian, Feng Mei, Suotang Jia, Nanyang Xu, and Heng Shen, "Digital quantum simulation of Floquet topological phases with a solid-state quantum simulator," Photonics Research 9(1), 81-87 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF