首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1007002--1)

基于深度学习的低信噪比下的快速超分辨荧光显微成像

Fast Super-Resolution Fluorescence Microscopy Imaging with Low Signal-to-Noise Ratio Based on Deep Learning

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

超分辨荧光成像实验的分辨率和成像质量与实验过程中收集到的荧光分子光子数和背景噪声有着密切的关系。为了实现低光子数、高背景光下的快速超分辨荧光显微成像,利用所提卷积神经网络算法实现了对极低信噪比信号的恢复,并结合重构网络进行了超分辨成像。结果表明:利用该方法可以实现荧光信号在低信噪比下的有效恢复,峰值信噪比可达27 dB,明显优于同类的其他两种算法。该方法还可以配合Deep-STORM重构网络在低信噪比下实现快速的超分辨成像。重构结果的归一化均方误差为7.5%,分辨率相较其他算法有明显提升。实验条件下的重构结果验证了该方法的能力,为弱信号下的荧光快速超分辨成像提供了可行方案。

Abstract

The resolution and imaging quality of super-resolution fluorescence imaging significantly depend on the number of fluorescent molecular photons collected during the experiment, as well as the background noise. To obtain fast super-resolution fluorescence microscopy imaging under low photon count and high background light conditions, the proposed convolutional neural network is employed to restore the signal with extremely low signal-to-noise ratio (SNR) and combined with the reconstruction network to perform super-resolution imaging. The results show that the fluorescence signal can be effectively recovered under the condition of low signal-to-noise ratio, the peak signal-to-noise ratio can reach 27 dB, which is significantly better than the other two algorithms. The proposed method can also cooperate with Deep-STORM reconstruction network to obtain fast super-resolution imaging under low SNR conditions. The normalized mean square error of the reconstructed result is 7.5%, and the resolution is significantly improved compared to the other similar algorithms. Additionally, the reconstruction results under experimental conditions verify the ability of the proposed method and provide a feasible solution for fast super-resolution fluorescence imaging under weak signals.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/CJL202047.1007002

所属栏目:生物医学光子学与激光医学

基金项目:国家重点研发计划;

收稿日期:2020-04-28

修改稿日期:2020-06-09

网络出版日期:2020-10-01

作者单位    点击查看

肖康:上海大学理学院物理系, 上海 200444
田立君:上海大学理学院物理系, 上海 200444
王中阳:中国科学院上海高等研究院宏观量子中心, 上海 201210

联系人作者:田立君(tianlijun@shu.edu.cn); 王中阳(tianlijun@shu.edu.cn);

备注:国家重点研发计划;

【1】Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods. 2006, 3(10): 793.Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods. 2006, 3(10): 793.

【2】Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J]. Biophysical Journal. 2006, 91(11): 4258-4272.

【3】Zhu L, Zhang W, Elnatan D, et al. Faster STORM using compressed sensing [J]. Nature Methods. 2012, 9(7): 721-723.

【4】Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning [J]. Optica. 2018, 5(4): 458.

【5】Pan W H, Chen B L, Zhang J G, et al. Compressed sensing STORM super-resolution image reconstruction based on noise correction-principal component analysis preprocessing algorithm [J]. Chinese Journal of Lasers. 2020, 47(2): 0207024.
潘文慧, 陈秉灵, 张建国, 等. 基于噪声校正主成分分析的压缩感知STORM超分辨图像重构 [J]. 中国激光. 2020, 47(2): 0207024.

【6】Dempsey G T, Vaughan J C, Chen K H, et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging [J]. Nature Methods. 2011, 8(12): 1027.

【7】Zuo C, Feng S J, Zhang X Y, et al. Deep learning based computational imaging: status, challenges, and future [J]. Acta Optica Sinica. 2020, 40(1): 0111003.
左超, 冯世杰, 张翔宇, 等. 深度学习下的计算成像: 现状、挑战与未来 [J]. 光学学报. 2020, 40(1): 0111003.

【8】Wang H, Rivenson Y, Jin Y, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy [J]. Nature Methods. 2019, 16(1): 103.

【9】Li S M, Lei G Q, Fan R. Depth map super-resolution reconstruction based on convolutional neural networks [J]. Acta Optica Sinica. 2017, 37(12): 1210002.
李素梅, 雷国庆, 范如. 基于卷积神经网络的深度图超分辨率重建 [J]. 光学学报. 2017, 37(12): 1210002.

【10】Zhu Y, Shi J H, Wu X Y, et al. Photon-limited non-imaging object detection and classification based on single-pixel imaging system [J]. Applied Physics B. 2020, 126(1): 21.

【11】Zhang K, Zuo W M, Chen Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising [J]. IEEE Transactions on Image Processing. 2017, 26(7): 3142-3155.

【12】Zhou W J, Zou S, He D K, et al. Speckle noise reduction of holograms based on spectral convolutional neural network [J]. Acta Optica Sinica. 2020, 40(5): 0509001.
周文静, 邹帅, 何登科, 等. 频谱卷积神经网络实现全息图散斑降噪 [J]. 光学学报. 2020, 40(5): 0509001.

【13】Hirsch M, Wareham R J. Martin-Fernandez M L, et al. A Stochastic model for electron multiplication charge-coupled devices-from theory to practice [J]. Plos One. 2013, 8(1): e53671.

【14】Plakhotnik T, Chennu A, Zvyagin A V. Statistics of single-electron signals in electron-multiplying charge-coupled devices [J]. IEEE Transactions on Electron Devices. 2006, 53(4): 618-622.

【15】Huang G, Liu Z. Laurens V D M, et al. Densely connected convolutional networks[C]∥2017 IEEE conference on Computer Vision and Pattern Recognition. July 21-26, 2017. Honolulu, Hi, USA. New York: , 2017, 17355312.

【16】Sun L, Shi J H, Wu X Y, et al. Photon-limited imaging through scattering medium based on deep learning [J]. Optics Express. 2019, 27(23): 33120-33134.

【17】Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media [J]. Optica. 2018, 5(10): 1181-1190.

【18】Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks [J]. Optica. 2018, 5(7): 803-813.

【19】Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann machines for collaborative filtering[C]∥Proceedings of the 24th international conference on Machine learning-ICML''''07. June 20-24, 2007. Corvalis, Oregon. New York: , 2007, 791-798.

【20】Hinton G E, Srivastava N, Krizhevsky A, et al. arXiv:1207 [2020-04-28]. 0580 https:∥arxiv. 2012, org/abs/1207: 0580.

【21】He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, 770-778.

【22】Huang F, Schwartz S L, Byars J M, et al. Simultaneous multiple-emitter fitting for single molecule super-resolution imaging [J]. Biomedical Optics Express. 2011, 2(5): 1377-1393.

【23】Kingma D P. arXiv:1412 [2020-04-28]. 6980 https:∥arxiv. 2014, org/abs/1412: 6980.

【24】Abadi M, Agarwal A, Barham P, et al. arXiv:1603 [2020-04-28]. 04467 https:∥arxiv. 2016, org/abs/1603: 04467.

【25】Hou Y K, Zhao C X, Yang D Y, et al. Comments on “image denoising by sparse 3-D transform-domain collaborative filtering” [J]. IEEE Transactions on Image Processing. 2011, 20(1): 268-270.

【26】Holden S J, Uphoff S, Kapanidis A N. DAOSTORM: an algorithm for high-density super-resolution microscopy [J]. Nature Methods. 2011, 8(4): 279-280.

【27】Hyde, et al. ER-Tracker dye and BODIPY-brefeldin A differentiate the endoplasmic reticulum and Golgi bodies from the tubular-vacuole system in living hyphae of Pisolithus tinctorius [J]. Journal of Microscopy. 2000, 197(3): 239-249.

引用该论文

Xiao Kang,Tian Lijun,Wang Zhongyang. Fast Super-Resolution Fluorescence Microscopy Imaging with Low Signal-to-Noise Ratio Based on Deep Learning[J]. Chinese Journal of Lasers, 2020, 47(10): 1007002

肖康,田立君,王中阳. 基于深度学习的低信噪比下的快速超分辨荧光显微成像[J]. 中国激光, 2020, 47(10): 1007002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF