首页 > 论文 > 激光与光电子学进展 > 57卷 > 4期(pp:40001--1)

机器人视觉三维成像技术综述 (封面文章) (特邀综述)

Review of Three-Dimensional Imaging Techniques for Robotic Vision (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本文针对智能制造领域机器人视觉感知中的三维视觉成像技术进行综述,系统地总结了一些有代表性的机器人视觉成像方法的特点和实际应用中的局限性,内容涉及飞行时间三维成像、点线扫描三维成像、色散共焦成像、结构光投影三维成像、光学偏折成像、单目与多目立体视觉三维成像和光场成像等。绘制了各种视觉成像的图谱,并探讨了机器人手眼系统最佳三维成像方法。

Abstract

The three-dimensional (3D) imaging techniques of robotic vision in the field of intelligent manufacturing robot vision perception are reviewed. The characteristics and limitation in practical applications of some typical robot vision imaging methods are systematically summarized. The content involves time-of-flight imaging, point and line scanning imaging, chromatic confocal imaging, structured light projection imaging, deflectometric imaging, monocular and multi-view stereo imaging, and light field imaging. The tree map of various robotic vision imaging methods are drawn. The best 3D imaging methods of eye-in-hand robotic system are discussed.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP74

DOI:10.3788/LOP57.040001

所属栏目:综述

基金项目:国家自然科学基金、国家重点研发计划、国家重大科学仪器开发与应用专项;

收稿日期:2020-01-06

修改稿日期:2020-02-11

网络出版日期:2020-02-01

作者单位    点击查看

卢荣胜:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
史艳琼:安徽建筑大学机械与电气工程学院, 安徽 合肥 230601
胡海兵:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009

联系人作者:卢荣胜(rslu@hfut.edu.cn); 史艳琼(yqshi@ahjzu.edu.cn);

备注:国家自然科学基金、国家重点研发计划、国家重大科学仪器开发与应用专项;

【1】Lu R S, Wu A, Zhang T D, et al. Review on automated optical (visual) inspection and its applications in defect detection [J]. Acta Optica Sinica. 2018, 38(8): 0815002.
卢荣胜, 吴昂, 张腾达, 视觉, 等. 检测技术及其在缺陷检测中的应用综述 [J]. 光学学报. 2018, 38(8): 0815002.

【2】He Z X, Wu C R, Zhang S Y, et al. Moment-based 2. 5-D visual servoing for textureless planar part grasping [J]. IEEE Transactions on Industrial Electronics. 2019, 66(10): 7821-7830.

【3】Malis E, Chaumette F, Boudet S. 2 1/2 D visual servoing [J]. IEEE Transactions on Robotics and Automation. 1999, 15(2): 238-250.

【4】Kragic D, Christensen H I. Survey on visual servoing for manipulation[R] . Report from Computational Vision and Active Perception Laboratory (CVAP). 2002, 1-59.

【5】Dong G Q, Zhu Z H. Kinematics-based incremental visual servo for robotic capture of non-cooperative target [J]. Robotics and Autonomous Systems. 2019, 112: 221-228.

【6】Xu D, Tan M, Li Y. Visual measurement and control for robots: 3rd ed[M]. Beijing: National Defense Industry Press, 2016.
徐德, 谭民, 李原. 机器人视觉测量与控制(第3版)[M]. 北京: 国防工业出版社, 2016.

【7】Hashimoto K. A review on vision-based control of robot manipulators [J]. Advanced Robotics. 2003, 17(10): 969-991.

【8】Ozato A, Maru N. Position and attitude control of eye-in-hand system by visual servoing using binocular visual space . [C]∥2014 World Automation Congress (WAC), August 3-7, 2014. Waikoloa, HI. IEEE. 2014, 7-12.

【9】Walck G, Drouin M. Progressive 3D reconstruction of unknown objects using one eye-in-hand camera . [C]∥2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin. 2009, 971-976.

【10】Nobakht H, Liu Y. A hybrid positioning method for eye-in-hand industrial robot by using 3D reconstruction and IBVS . [C]∥2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), December 6-9, 2015. Zhuhai. IEEE. 2015, 2609-2614.

【11】Hentout A, Bouzouia B, Akli I, et al. Multi-agent control architecture of mobile manipulators: extraction of 3D coordinates of object using an eye-in-hand camera . [C]∥2009 3rd International Conference on Signals, Circuits and Systems (SCS), November 6-8, 2009. Medenine, Tunisia. IEEE. 2009, 1-6.

【12】Shaw J, Cheng K Y. Object identification and 3D position calculation using eye-in-hand single camera for robot gripper . [C]∥2016 IEEE International Conference on Industrial Technology (ICIT), March 14-17, 2016. Taipei, Taiwan, China. IEEE. 2016, 1622-1625.

【13】Luo R C, Chou S C, Yang X Y, et al. Hybrid eye-to-hand and eye-in-hand visual servo system for parallel robot conveyor object tracking and fetching . [C]∥IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, October 29-November 1, 2014. Dallas, TX, USA. IEEE. 2014, 2558-2563.

【14】Flandin G, Chaumette F, Marchand E. Eye-in-hand/eye-to-hand cooperation for visual servoing . [C]∥Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA. IEEE. 2000, 3: 2741-2746.

【15】Muis A, Ohnishi K. Eye-to-hand approach on eye-in-hand configuration within real-time visual servoing [J]. ASME Transactions on Mechatronics. 2005, 10(4): 404-410.

【16】Lippiello V, Siciliano B, Villani L. Eye-in-hand/eye-to-hand multi-camera visual servoing . [C]∥Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain. IEEE. 2005, 5354-5359.

【17】Zhao Y S, Gong L, Huang Y X, et al. A review of key techniques of vision-based control for harvesting robot [J]. Computers and Electronics in Agriculture. 2016, 127: 311-323.

【18】Elarbi-Boudihir M. Al-Shalfan K A. Eye-in-hand/eye-to-hand configuration for a WMRA control based on visual servoing . [C]∥2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics, June 24-26, 2013. Toulouse Cedex 7, France. IEEE. 2013, 1-8.

【19】Brown G M. Overview of three-dimensional shape measurement using optical methods [J]. Optical Engineering. 2000, 39(1): 10-22.

【20】Bi Z M, Wang L H. Advances in 3D data acquisition and processing for industrial applications [J]. Robotics and Computer-Integrated Manufacturing. 2010, 26(5): 403-413.

【21】Aggarwal J K, Xia L. Human activity recognition from 3D data: a review [J]. Pattern Recognition Letters. 2014, 48: 70-80.

【22】Maier-Hein L, Mountney P, Bartoli A, et al. Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery [J]. Medical Image Analysis. 2013, 17(8): 974-996.

【23】Sch?ning J, Heidemann G. Taxonomy of 3D sensors - a survey of state-of-the-art consumer 3D-reconstruction sensors and their field of applications . [C]∥Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, February 27-29, 2016. Rome, Italy. SCITEPRESS-Science and and Technology Publications. 2016.

【24】Remondino F, Editors D S. TOF range-imaging cameras [M]. London: Springer. 2013.

【25】Besl P J. Active, optical range imaging sensors [J]. Machine Vision and Applications. 1988, 1(2): 127-152.

【26】Lange R, Seitz P. Seeing distances-a fast time-of-flight 3D camera [J]. Sensor Review. 2000, 20(3): 212-217.

【27】PMD Technologies Website [2020-01-20].www. pmdtec. com.[2020-01-20]. 0.

【28】SoftKinetic Website [2020-01-20].www. softkinetic. com.[2020-01-20]. 0.

【29】Reiser U, Kubacki J. Using a 3D time-of-flight range camera for visual tracking [J]. IFAC Proceedings Volumes. 2007, 40(15): 355-360.

【30】Ollikkala A V H, Makynen A J. Range imaging using a time-of-flight 3D camera and a cooperative object . [C]∥2009 IEEE Intrumentation and Measurement Technology Conference, May 5-7, 2009. Singapore. Singapore. IEEE. 2009, 817-821.

【31】Alenyà G, Foix S, Torras C. ToF cameras for active vision in robotics [J]. Sensors and Actuators A: Physical. 2014, 218: 10-22.

【32】Piatti D, Rinaudo F. SR-4000 and CamCube3. 0 time of flight (ToF) cameras: tests and comparison [J]. Remote Sensing. 2012, 4(4): 1069-1089.

【33】Hebert M. Active and passive range sensing for robotics . [C]∥Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA. IEEE. 2000, 1: 102-110.

【34】Chougule V N, Gosavi H S, Dharwadkar M M, et al. Review of different 3D scanners and scanning techniques . [C]∥IOSR Journal of Engineering (IOSRJEN), 7th National conference on Recent Developments In Mechanical Engineering RDME-2018. 2018, 41-44.

【35】de Sousa G B, Olabi A, Palos J, et al. 3D metrology using a collaborative robot with a laser triangulation sensor [J]. Procedia Manufacturing. 2017, 11: 132-140.

【36】Ettl S. Introductory review on ‘Flying Triangulation’: a motion-robust optical 3D measurement principle [J]. Contemporary Physics. 2015, 56(2): 144-158.

【37】Ettl S, Arold O, Yang Z, et al. Flying triangulation: an optical 3D sensor for the motion-robust acquisition of complex objects [J]. Applied Optics. 2012, 51(2): 281-289.

【38】Arold O, Ettl S, Willomitzer F, et al. Hand-Guided 3D Surface Acquisition by Combining Simple Light Sectioning with Real-Time Algorithms [2020-01-20].https: ∥arxiv.[2020-01-20]. 0, org/abs/1401: 1946.

【39】Hillenbrand M, Mitschunas B. Brill F A G, et al. Spectral characteristics of chromatic confocal imaging systems [J]. Applied Optics. 2014, 53: 7634-7642.

【40】Hillenbrand M, Lorenz L, Kleindienst R, et al. Spectrally multiplexed chromatic confocal multipoint sensing [J]. Optics Letters. 2013, 38(22): 4694-4697.

【41】Hillenbrand M, Weiss R, Endr?dy C, et al. Chromatic confocal matrix sensor with actuated pinhole arrays [J]. Applied Optics. 2015, 54(15): 4927-4936.

【42】Beyerer J, Puente F, Frese L C. Chapter 7. Methods of image acquisition, in book: machine vision -- automated visual inspection: theory, practice and applications [M]. London: Springer. 2016, 307-308.

【43】Taphanel M, Zink R, Langle T, et al. Multiplex acquisition approach for high speed 3d measurements with a chromatic confocal microscope [J]. Proceedings of SPIE. 2015, 9525: 95250Y.

【44】Taphanel M, Beyerer J. Fast 3D in-line sensor for specular and diffuse surfaces combining the chromatic confocal and triangulation principle . [C]∥2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, May 13-16, 2012. Graz, Austria. IEEE. 2012, 1072-1077.

【45】Lin P C, Sun P C, Zhu L J, et al. Single-shot depth-section imaging through chromatic slit-scan confocal microscopy [J]. Applied Optics. 1998, 37(28): 6764-6770.

【46】Chun B S, Kim K, Gweon D. Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope [J]. The Review of Scientific Instruments. 2009, 80(7): 073706.

【47】Zhong K, Li Z W, Zhou X H, et al. Enhanced phase measurement profilometry for industrial 3D inspection automation [J]. The International Journal of Advanced Manufacturing Technology. 2015, 76(9/10/11/12): 1563-1574.

【48】Servin M, Padilla M, Garnica G, et al. Profilometry of three-dimensional discontinuous solids by combining two-steps temporal phase unwrapping, co-phased profilometry and phase-shifting interferometry [J]. Optics and Lasers in Engineering. 2016, 87: 75-82.

【49】Servin M, Garnica G, Padilla J M. 360-Degree Profilometry of Discontinuous Solids Co-Phasing 2-Projectors and 1-Camera [2020-01-20].https: ∥arxiv.[2020-01-20]. 0, org/abs/1408: 6463.

【50】Servin M, Garnica G, Estrada J C, et al. Coherent digital demodulation of single-camera N-projections for 3D-object shape measurement: Co-phased profilometry [J]. Optics Express. 2013, 21(21): 24873.

【51】Application Report. Getting Started with TI DLP ? Display Technology [2020-01-20].http: ∥www. ti. com. cn/cn/lit/an/dlpa059c/dlpa059c. pdf.[2020-01-20]. 0.

【52】Sun W S, Chiang Y C, Tsuei C H. Optical design for the DLP pocket projector using LED light source [J]. Physics Procedia. 2011, 19: 301-307.

【53】Ishiyama H, Terabayashi K, Umeda K. A 100 Hz real-time sensing system of textured range images . [C]∥International Symposium on Optomechatronic Technologies. IEEE. 2011.

【54】van der Jeught S, Dirckx J J J. Real-time structured light profilometry: a review [J]. Optics and Lasers in Engineering. 2016, 87: 18-31.

【55】Geng J. Structured-light 3D surface imaging: a tutorial [J]. Advances in Optics and Photonics. 2011, 3(2): 128-160.

【56】Fernandez S. One-shot pattern projection for dense and accurate 3D acquisition in structured light [D]. Girona : University of Girona. 2012.

【57】Salvi J, Fernandez S, Pribanic T, et al. A state of the art in structured light patterns for surface profilometry [J]. Pattern Recognition. 2010, 43(8): 2666-2680.

【58】Lin H B, Nie L, Song Z. A single-shot structured light means by encoding both color and geometrical features [J]. Pattern Recognition. 2016, 54: 178-189.

【59】Chen L C, Nguyen X L. Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model [J]. Measurement Science and Technology. 2010, 21(5): 054009.

【60】Zhang Z H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques [J]. Optics and Lasers in Engineering. 2012, 50(8): 1097-1106.

【61】Tang S M, Zhang X, Song Z, et al. Robust pattern decoding in shape-coded structured light [J]. Optics and Lasers in Engineering. 2017, 96: 50-62.

【62】Khoshelham K, Elberink S O. Accuracy and resolution of kinect depth data for indoor mapping applications [J]. Sensors. 2012, 12(2): 1437-1454.

【63】Lin C, Li Y, Xu G, et al. Optimizing ZNCC calculation in binocular stereo matching [J]. Signal Processing: Image Communication. 2017, 52: 64-73.

【64】Birchfield S, Tomasi C. A pixel dissimilarity measure that is insensitive to image sampling [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998, 20(4): 401-406.

【65】Mei X, Sun X, Zhou M C, et al. On building an accurate stereo matching system on graphics hardware . [C]∥2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), November 6-13, 2011. Barcelona, Spain. IEEE. 2011, 467-474.

【66】Hirschmuller H. Accurate and efficient stereo processing by semi-global matching and mutual information . [C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR''''05), San Diego, CA, USA. IEEE. 2005, 2: 807-814.

【67】Hirschmuller H. Stereo processing by semiglobal matching and mutual information [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2008, 30(2): 328-341.

【68】Hong L, Chen G. Segment-based stereo matching using graph cuts . [C]∥Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA. IEEE. 2004.

【69】Middlebury Stereo Evaluation - Version 3 [2020-01-20].http: ∥vision. middlebury. edu/stereo/eval3/.[2020-01-20]. 0.

【70】Salvi J, Pagès J, Batlle J. Pattern codification strategies in structured light systems [J]. Pattern Recognition. 2004, 37(4): 827-849.

【71】Ayubi G A, di Martino J M, Flores J L, et al. Binary coded linear fringes for three-dimensional shape profiling [J]. Optical Engineering. 2012, 51(10): 103601.

【72】Zhang Q C, Su X Y, Xiang L Q, et al. 3D shape measurement based on complementary Gray-code light [J]. Optics and Lasers in Engineering. 2012, 50(4): 574-579.

【73】Zuo C, Feng S J, Huang L, et al. Phase shifting algorithms for fringe projection profilometry: a review [J]. Optics and Lasers in Engineering. 2018, 109: 23-59.

【74】Mao C L, Lu R S, Dong J T, et al. Overview of the 3D profilometry of phase shifting fringe projection [J]. Acta Metrologica Sinica. 2018, 39(5): 628-640.
毛翠丽, 卢荣胜, 董敬涛, 等. 相移条纹投影三维形貌测量技术综述 [J]. 计量学报. 2018, 39(5): 628-640.

【75】Zuo C, Huang L, Zhang M L, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review [J]. Optics and Lasers in Engineering. 2016, 85: 84-103.

【76】Talebi R, Abdel-Dayem A, et al. Computer. 2014, 291-304.

【77】Posdamer J L, Altschuler M D. Surface measurement by space-encoded projected beam systems [J]. Computer Graphics and Image Processing. 1982, 18(1): 1-17.

【78】Moreno D, Taubin G. Simple, accurate, and robust projector-camera calibration . [C]∥2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, October 13-15, 2012. Zurich, Switzerland. IEEE. 2012, 464-471.

【79】Mao C L, Lu R S, Liu Z J. A multi-frequency inverse-phase error compensation method for projector nonlinear in 3D shape measurement [J]. Optics Communications. 2018, 419: 75-82.

【80】Zheng D L, Da F P, Qian K M, et al. Phase-shifting profilometry combined with Gray-code patterns projection: unwrapping error removal by an adaptive median filter [J]. Optics Express. 2017, 25(5): 4700-4713.

【81】Wu Z J, Guo W B, Zhang Q C. High-speed three-dimensional shape measurement based on shifting Gray-code light [J]. Optics Express. 2019, 27(16): 22631-22644.

【82】Sansoni G, Carocci M, Rodella R. Three-dimensional vision based on a combination of Gray-code and phase-shift light projection: analysis and compensation of the systematic errors [J]. Applied Optics. 1999, 38(31): 6565-6573.

【83】Balzer J, Werling S. Principles of shape from specular reflection [J]. Measurement. 2010, 43(10): 1305-1317.

【84】H?usler G, Knauer M C, Faber C, et al. Deflectometry: 3D-metrology from nanometer to meter [M]. ∥Fringe 2009. Berlin, Heidelberg: Springer Berlin Heidelberg. 2009, 1-6.

【85】Zhang H W, Ji L S, Liu S G, et al. Three-dimensional shape measurement of a highly reflected, specular surface with structured light method [J]. Applied Optics. 2012, 51(31): 7724-7732.

【86】Zhang Z H, Wang Y M, Huang S J, et al. Three-dimensional shape measurements of specular objects using phase-measuring deflectometry [J]. Sensors. 2017, 17(12): 2835.

【87】Liu M M, Hartley R, Salzmann M. Mirror surface reconstruction from a single image [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015, 37(4): 760-773.

【88】Savarese S, Chen M, Perona P. Local shape from mirror reflections [J]. International Journal of Computer Vision. 2005, 64(1): 31-67.

【89】Knauer M C, Kaminski J, Hausler G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces . [C]∥Optical Metrology in Production Engineering. International Society for Optics and Photonics. 2004.

【90】Wang Z, Inokuchi S. Determining shape of specular surfaces . [C]∥The 8th Scandinavian Conference on Image Analysis, Tromso, Norway, May 25-28. 1993, 1190-1187.

【91】Ren H Y, Gao F, Jiang X Q. Iterative optimization calibration method for stereo deflectometry [J]. Optics Express. 2015, 23(17): 22060-22068.

【92】Xu Y J, Gao F, Zhang Z H, et al. A holistic calibration method with iterative distortion compensation for stereo deflectometry [J]. Optics and Lasers in Engineering. 2018, 106: 111-118.

【93】Nguyen H, Nguyen D, Wang Z Y, et al. Real-time, high-accuracy 3D imaging and shape measurement [J]. Applied Optics. 2015, 54(1): A9-A17.

【94】Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques [J]. Optics and Lasers in Engineering. 2010, 48(2): 149-158.

【95】Howard I P, Rogers B J. Development and pathology of binocular vision[M]. ∥Binocular Vision and Stereopsis: , 1996, 603-644.

【96】Trucco E, Verri A. Chapter 7 Stereopsis [M]. ∥Introductory techniques for 3D computer vision, Prentice Hall PTR Upper Saddle River, NJ, USA. 1998, 139-177.

【97】Ge G T, Cheng Z Q, Ke P P, et al. Depth map extracting based on geometric perspective: an applicable 2D to 3D conversion technology . [C]∥2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), October 14-16, 2017. Shanghai. IEEE. 2017, 1-5.

【98】Watt S J, Akeley K, Ernst M O, et al. Focus cues affect perceived depth [J]. Journal of Vision. 2005, 5(10): 834-862.

【99】Billiot B, Cointault F, Journaux L, et al. 3D image acquisition system based on shape from focus technique [J]. Sensors. 2013, 13(4): 5040-5053.

【100】Schechner Y Y, Kiryati N. Depth from defocus vs. stereo: how different really are they? . [C]∥Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No. 98EX170), Brisbane, Qld., Australia. IEEE Comput. Soc. 1998.

【101】Furukawa Y, Hernández C. Multi-view stereo: a tutorial [J]. Foundations and Trends ? in Computer Graphics and Vision. 2015, 9(1/2): 1-148.

【102】Moons T. 3D reconstruction from multiple images part 1: principles [J]. Foundations and Trends ? in Computer Graphics and Vision. 2008, 4(4): 287-404.

【103】Wang G H, Cheng J. Three-dimensional reconstruction of hybrid surfaces using perspective shape from shading [J]. Optik. 2016, 127(19): 7740-7751.

【104】Durou J D, Falcone M, Sagona M. Numerical methods for shape-from-shading: a new survey with benchmarks [J]. Computer Vision and Image Understanding. 2008, 109(1): 22-43.

【105】Kim H G R, Angelaki D E, DeAngelis G C. The neural basis of depth perception from motion parallax [J]. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016, 371(1697): 20150256.

【106】Kellnhofer P, Didyk P, Ritschel T, et al. Motion parallax in stereo 3D [J]. ACM Transactions on Graphics. 2016, 35(6): 1-12.

【107】Reskó B, Herbay D. Krasznai1 P, et al. 3D image sensor based on parallax motion [J]. Acta Polytechnica Hungarica. 2007, 4(4): 37-53.

【108】Zhou F Q, Wang Y X, Chai X H, et al. Review on precise measurement technology based on mirror binocular vision [J]. Acta Optica Sinica. 2018, 38(8): 0815003.
周富强, 王晔昕, 柴兴华, 等. 镜像双目视觉精密测量技术综述 [J]. 光学学报. 2018, 38(8): 0815003.

【109】Solgi M, Weng J Y. WWN-8: incremental online stereo with shape-from-X using life-long big data from multiple modalities [J]. Procedia Computer Science. 2015, 53: 316-326.

【110】Blake R, Wilson H. Binocular vision [J]. Vision Research. 2011, 51(7): 754-770.

【111】Qian N. Binocular disparity and the perception of depth [J]. Neuron. 1997, 18(3): 359-368.

【112】Bagga P J. Real time depth computation using stereo imaging [J]. Journal of Electrical and Electronic Engineering. 2013, 1(2): 51-54.

【113】Mattoccia S, Updates S M, Outline S M. Stereo Vision: Algorithms and Applications [2020-01-20].http: ∥vision. deis. unibo. it/~smatt/Seminars/StereoVision. pdf.[2020-01-20]. 0.

【114】Moulon P, Monasse P, Marlet R. Adaptive structure from motion with a contrario model estimation [M]. ∥Computer Vision-ACCV 2012. Berlin, Heidelberg: Springer Berlin Heidelberg. 2013, 257-270.

【115】Seitz S M, Curless B, Diebel J, et al. A comparison and evaluation of multi-view stereo reconstruction algorithms . [C]∥2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 1 (CVPR''''06), New York, NY, USA. IEEE. 2006, 1: 519-528.

【116】Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. Cambridge: , 2004.

【117】Szeliski R. Computer vision: algorithms and applications [M]. London: Springer. 2011.

【118】Raytrix. 3D Light Field Camera Technology for Professional Applications[2020-01-20]. https: ∥www. raytrix. de/wp-content/uploads/delightful-downloads/2016/07/R42. pdf.[2020-01-20]. 0.

【119】Lytro Light Field Camera [2020-01-20].https: ∥priceonomics. com/lytro-light-field-camera/.[2020-01-20]. 0.

【120】Ng R. Digital light field photography [D]. Stanford: Stanford University. 2006.

【121】Zhu H, Wang Q, Yu J Y. Light field imaging: models, calibrations, reconstructions, and applications [J]. Frontiers of Information Technology & Electronic Engineering. 2017, 18(9): 1236-1249.

【122】Abdelhamid M. Extracting depth information from stereo vision system, using a correlation and a feature based methods [D]. Clemson: Clemson University. 2011.

【123】Scharstein D, Szeliski R, Zabih R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms . [C]∥Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), Kauai, HI, USA. IEEE Comput. Soc. 2002, 47(1/2/3): 7-42.

【124】Hirschmuller H, Scharstein D. Evaluation of stereo matching costs on images with radiometric differences [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009, 31(9): 1582-1599.

【125】Boykov Y, Veksler O. Graph cuts in vision and graphics: theories and applications[M]∥Handbook of Mathematical Models in Computer Vision. New York: Springer-. 0, Verlag: 79-96.

【126】Beraldin J A, Blais F, Cournoyer L, et al. Active 3D sensing [J]. NRC Publications Archive (NPArC). 2010, 1-21.

【127】Sansoni G, Trebeschi M, Docchio F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation [J]. Sensors. 2009, 9(1): 568-601.

【128】Zhang S. High-speed 3D shape measurement with structured light methods: a review [J]. Optics and Lasers in Engineering. 2018, 106: 119-131.

【129】Read J C A. Visual perception: understanding visual cues to depth [J]. Current Biology. 2012, 22(5): R163-R165.

【130】Mather G, Smith D R. R. Depth cue integration: stereopsis and image blur [J]. Vision Research. 2000, 40: 3501-3506.

【131】Held R T, Cooper E A, Banks M S. Blur and disparity are complementary cues to depth [J]. Current Biology. 2012, 22(5): 426-431.

【132】Trouvé-Peloux P, Champagnat F, Le Besnerais G, et al. Theoretical performance model for single image depth from defocus [J]. Journal of the Optical Society of America A. 2014, 31(12): 2650-2662.

【133】Jin H L, Favaro P. A variational approach to shape from defocus [M]. ∥Computer Vision-ECCV 2002. Berlin, Heidelberg: Springer Berlin Heidelberg. 2002, 18-30.

【134】Kumar H, Yadav A S, Gupta S, et al. Depth map estimation using defocus and motion cues [J]. IEEE Transactions on Circuits and Systems for Video Technology. 2019, 29(5): 1365-1379.

【135】Marti?ek D. Fast shape-from-focus method for 3D object reconstruction [J]. Optik. 2018, 169: 16-26.

【136】Danzl R, Helmli F, Scherer S. Focus variation-a robust technology for high resolution optical 3D surface metrology [J]. Strojni?ki Vestnik-Journal of Mechanical Engineering. 2011, 2011(3): 245-256.

【137】Helmli F, Danzl R, Prantl M, et al. Ultra high speed 3D measurement with the focus variation method [M]. ∥Fringe 2013. Berlin, Heidelberg: Springer Berlin Heidelberg. 2014, 617-622.

【138】Wlodek J, Gofron K J, Cai Y. Achieving 3D imaging through focus stacking . [C]∥Proceedings of the 13th International Conference on Synchrotron Radiation Instrumentation-SRI2018, AIP Conference Proceedings. 2019, 2054: 050001.

【139】Qian Q, Guntur B K. Extending depth of field and dynamic range from differently focused and exposed images [J]. Multidimensional Systems and Signal Processing. 2016, 27(2): 493-509.

引用该论文

Lu Rongsheng,Shi Yanqiong,Hu Haibing. Review of Three-Dimensional Imaging Techniques for Robotic Vision[J]. Laser & Optoelectronics Progress, 2020, 57(4): 040001

卢荣胜,史艳琼,胡海兵. 机器人视觉三维成像技术综述[J]. 激光与光电子学进展, 2020, 57(4): 040001

被引情况

【1】王宏涛,雷相达,赵宗泽. 融合光谱信息的机载LiDAR点云三维深度学习分类方法. 激光与光电子学进展, 2020, 57(12): 122802--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF