首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1512-1521)

Saturable and reverse saturable absorption in molybdenum disulfide dispersion and film by defect engineering

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Understanding and controlling defect in two-dimensional materials is important for both linear and nonlinear optoelectronic devices, especially in terms of tuning nonlinear optical absorption. Taking advantage of an atomic defect formed easily by smaller size, molybdenum disulfide nanosheet is prepared successfully with a different size by gradient centrifugation. Interestingly, size-dependent sulfur vacancies are observed by high-resolution X-ray photoelectron spectroscopy, atomic force microscopy, and transmission electron microscopy. The defect effect on nonlinear absorption is investigated by Z-scan measurement at the wavelength of 800 nm. The results suggest the transition from saturable absorption to reverse saturable absorption can be observed in both dispersions and films. First principle calculations suggest that sulfur vacancies act as the trap state to capture the excited electrons. Moreover, an energy-level model with the trap state is put forward to explain the role of the sulfur vacancy defect in nonlinear optical absorption. The results suggest that saturable absorption and reverse saturable absorption originate from the competition between the excited, defect state and ground state absorption. Our finding provides a way to tune the nonlinear optical performance of optoelectronic devices by defect engineering.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.395870

所属栏目:Optical and Photonic Materials

基金项目:National Natural Science Foundation of China10.13039/501100001809; Natural Science Foundation of Shaanxi Province10.13039/501100007128;

收稿日期:2020-04-22

录用日期:2020-06-23

网络出版日期:2020-06-24

作者单位    点击查看

Chunhui Lu:Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi’an 710069, China
Hongwen Xuan:Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi’an 710069, China
Yixuan Zhou:Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi’an 710069, China
Xinlong Xu:Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi’an 710069, China
Qiyi Zhao:School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
Jintao Bai:Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi’an 710069, China

联系人作者:Hongwen Xuan(hwxuan@nwu.edu.cn)

备注:National Natural Science Foundation of China10.13039/501100001809; Natural Science Foundation of Shaanxi Province10.13039/501100007128;

【1】A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh and D. Madan. Near-unity photoluminescence quantum yield in MoS2. Science. 350, 1065-1068(2015).

【2】K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace and K. Cho. Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology. 25, (2014).

【3】S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman and J. Wu. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, (2013).

【4】H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang and Z. Ni. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano. 8, 5738-5745(2014).

【5】L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla and D. Voiry. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano. 13, 6824-6834(2019).

【6】Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi and J. Wang. Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater. 28, 4390-4396(2016).

【7】M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath and H. John. Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption. Phys. Chem. Chem. Phys. 16, 25093-25100(2014).

【8】A. Singh, S. Kumar, R. Das and P. K. Sahoo. Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods. RSC Adv. 5, 88767-88772(2015).

【9】P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang and Q. Bao. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces. 9, 12759-12765(2017).

【10】C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang and X. Xu. Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy. Adv. Opt. Mater. 6, (2018).

【11】K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee and Y. Wang. Carrier trapping by oxygen impurities in molybdenum diselenide. ACS Appl. Mater. Interfaces. 10, 1125-1131(2017).

【12】Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu and Z. Ni. Defect activated photoluminescence in WSe2 monolayer. J. Phys. Chem. C. 121, 12294-12299(2017).

【13】K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee and Y. Wang. Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2. npj 2D Mater. Appl. 1, (2017).

【14】S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi and K. Kim. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, (2012).

【15】L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen and W. Wang. A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties. Coord. Chem. Rev. 399, (2019).

【16】S. Karmakar, S. Biswas and P. Kumbhakar. A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures. Appl. Surf. Sci. 455, 379-391(2018).

【17】X. Zhang, R. Zhang, Y. Zhang, T. Jiang and S. Qin. Tunable photoluminescence of bilayer MoS2 via interlayer twist. Opt. Mater. 94, 213-216(2019).

【18】S. Karmakar, S. Biswas and P. Kumbhakar. Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication. Opt. Mater. 73, 585-594(2017).

【19】C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long and Y. H. Tsang. Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet. Opt. Mater. 101, (2020).

【20】R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu and J. Qiu. MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser. Nanoscale. 8, 7704-7710(2016).

【21】Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko and A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano. 4, 803-810(2010).

【22】J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon and J. H. Lee. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater. 26, 7454-7461(2016).

【23】J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang and J. Wang. Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets. ACS Photon. 4, 3063-3070(2017).

【24】K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau and J. Wang. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale. 6, 10530-10535(2014).

【25】P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee and P. M. Ajayan. Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets. Adv. Opt. Mater. 3, 828-835(2015).

【26】S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang and J. Wang. Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets. Opt. Mater. Express. 6, 3159-3168(2016).

【27】S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei and J. Wang. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 26, 3538-3544(2014).

【28】S. Salehi and A. Saffarzadeh. Atomic defect states in monolayers of MoS2 and WS2. Surf. Sci. 651, 215-221(2016).

【29】Y. Zhou, P. Yang, H. Zu, F. Gao and X. Zu. Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots. Phys. Chem. Chem. Phys. 15, 10385-10394(2013).

【30】K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song and H. L. Zhang. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets. Small. 11, 694-701(2015).

【31】H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang and K. P. Loh. Molybdenum disulfide MoS2 as a broadband saturable absorber for ultra-fast photonics. Opt. Express. 22, 7249-7260(2014).

【32】X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan and Q.-H. Xu. Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses. J. Phys. Chem. Lett. 3, 785-790(2012).

【33】M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai and X. Xu. Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films. J. Phys. Chem. C. 121, 27147-27153(2017).

【34】C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan and X. Xu. Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films. Appl. Surf. Sci. 479, 1161-1168(2019).

【35】L.-P. Feng, J. Su and Z.-T. Liu. Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: a first-principles study. J. Alloys Compd. 613, 122-127(2014).

【36】J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou and Y. Xie. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25, 5807-5813(2013).

【37】A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi and Y. Tachibana. Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys. 17, 2850-2858(2015).

【38】G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai and P. M. Ajayan. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 16, 1097-1103(2016).

【39】X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang and F. Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682-686(2014).

【40】P. Kumar, M. Singh and G. B. Reddy. Oxidized core-shell MoO2–MoS2 nanostructured thin films for hydrogen evolution. ACS Appl. Nano Mater. 3, 711-723(2019).

【41】S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards and D. Roy. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B. 91, (2015).

【42】M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai and X. Xu. Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films. J. Phys. Chem. C. 121, 27147-27153(2017).

【43】Q. Ouyang, H. Yu, K. Zhang and Y. Chen. Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films. J. Mater. Chem. C. 2, 6319-6325(2014).

【44】L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang and J. Wang. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photon. Rev. 13, (2019).

【45】K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang and W. J. Blau. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano. 7, 9260-9267(2013).

【46】X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai and X. Xu. Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber. J. Lightwave Technol. 36, 5130-5136(2018).

【47】B. M. Szyd?owska, B. Tywoniuk and W. J. Blau. Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime. ACS Photon. 5, 3608-3612(2018).

【48】G.-H. Jung, S. Yoo and Q. H. Park. Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions. Nanophotonics. 8, 263-270(2018).

【49】M. Zawadzka, J. Wang, W. J. Blau and M. O. Senge. Modeling of nonlinear absorption of 5, 10-A2B2 porphyrins in the nanosecond regime. J. Phys. Chem. A. 117, 15-26(2013).

【50】Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai and X. Xu. Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications. Nanoscale. 10, 3547-3555(2018).

【51】J. D. Fuhr, A. Saul and J. O. Sofo. Scanning tunneling microscopy chemical signature of point defects on the MoS2 (0001) surface. Phys. Rev. Lett. 92, (2004).

【52】W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson and J. C. Idrobo. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615-2622(2013).

【53】M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen and K. S. Thygesen. Defect-tolerant monolayer transition metal dichalcogenides. Nano Lett. 16, 2234-2239(2016).

【54】X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui and J. Wang. Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering. Nanoscale. 10, 17924-17932(2018).

【55】B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao and R. Philip. The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures. Phys. Chem. Chem. Phys. 16, 8168-8177(2014).

【56】C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao and X. Xu. Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance. Adv. Mater. Interfaces. 6, (2019).

【57】N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril and S. Couris. Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids. J. Phys. Chem. C. 117, 6842-6850(2013).

引用该论文

Chunhui Lu, Hongwen Xuan, Yixuan Zhou, Xinlong Xu, Qiyi Zhao, and Jintao Bai, "Saturable and reverse saturable absorption in molybdenum disulfide dispersion and film by defect engineering," Photonics Research 8(9), 1512-1521 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF