首页 > 论文 > 激光与光电子学进展 > 57卷 > 20期(pp:201503--1)

两阶段变尺度三维点云配准算法研究

Research on Two-Stage Variable Scale Three-Dimensional Point Cloud Registration Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对现有点云配准算法不能很好地同时解决点云模型变尺度和配准精度等问题,提出一种变尺度的两阶段点云模型配准算法。第一阶段加入动态的尺度因子,粗略估计并调整目标点云模型的尺度;然后将空间旋转变换三个角度进行格点划分,以30°为格点间距,这提高了算法的收敛速度并避免陷入局部最优,为第二阶段配准提供良好的初始位置。在尺度迭代最近点(SICP)算法基础上对第二阶段进行优化,以此对点云模型进行更加精准的匹配。对不同配准算法进行了综合对比实验,结果表明,在两个点云模型间存在较大刚体变换且尺度显著不同的情况下,所提算法的配准误差数量级为10 -30~10 -4。

Abstract

Existing point cloud registration algorithms cannot solve problems of variable scale and registration accuracy of point cloud models simultaneously. Hence, this paper proposes a two-stage variable scale point cloud model registration algorithm. In the first stage of the algorithm, a dynamic scale factor is added to approximately estimate and adjust the scale of the target point cloud model. Spatial rotation transformation is then performed at three angles to divide the grid points, and the grid point spacing is set to 30°. This improves the convergence speed of the algorithm and prevents a local optimum, thus providing a good initial position for the second stage of registration. The second stage is optimized based on a scale iterative closest point (SICP) algorithm to match the point cloud model more precisely. A comprehensive comparison experiment is performed on different registration algorithms, and the experimental results show that in the case where there is a large rigid body transformation between two point cloud models and the scales are significantly different, the proposed algorithm has an order of magnitude of registration error of 10 -30--10 -4.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391.9

DOI:10.3788/LOP57.201503

所属栏目:机器视觉

基金项目:陕西省教育厅专项科研计划、陕西省自然科学基础研究计划、宁夏回族自治区重点研发计划、西安邮电大学创新创业项目;

收稿日期:2020-01-19

修改稿日期:2020-02-24

网络出版日期:2020-10-01

作者单位    点击查看

卢升:西安邮电大学计算机学院, 陕西 西安 710121
韩俊刚:西安邮电大学计算机学院, 陕西 西安 710121
王连哲:西安邮电大学计算机学院, 陕西 西安 710121
唐海鹏:南密西西比大学计算机科学与工程学院, 美国 密西西比 39406
齐全:石河子大学信息科学与技术学院, 新疆 石河子 832000
冯宁宇:宁夏医科大学总医院耳鼻咽喉头颅外科, 宁夏 银川 750004
汤少杰:西安邮电大学自动化学院, 陕西 西安 710121

联系人作者:汤少杰(tangshaojie@xupt.edu.cn)

备注:陕西省教育厅专项科研计划、陕西省自然科学基础研究计划、宁夏回族自治区重点研发计划、西安邮电大学创新创业项目;

【1】Besl P J. McKay N D. Method for registration of 3-D shapes [J]. Proceedings of SPIE. 1992, 1611: 586-606.

【2】Chen Y, Medioni G. Object modelling by registration of multiple range images [J]. Image and Vision Computing. 1992, 10(3): 145-155.

【3】Yang J L, Li H D, Jia Y D. Go-ICP: solving 3D registration efficiently and globally optimally . [C]∥Proceedings of the IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE. 2013, 1457-1464.

【4】Yang J L, Li H D, Campbell D, et al. Go-ICP: a globally optimal solution to 3D ICP point-set registration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2016, 38(11): 2241-2254.

【5】Bouaziz S, Tagliasacchi A, Pauly M. July 3-5, 2013, Genova, Italy. Oxford: Blackwell Publishing: , 2013, 32(5): 113-123.

【6】Mavridis P, Andreadis A, Papaioannou G. Efficient sparse ICP [J]. Computer Aided Geometric Design. 2015, 35: 16-26.

【7】Du S Y, Liu J, Zhang C J, et al. Probability iterative closest point algorithm for m-D point set registration with noise [J]. Neurocomputing. 2015, 157(157): 187-198.

【8】Zhou W Z, Chen G L, Du S S, et al. An improved iterative closest point algorithm using clustering [J]. Laser & Optoelectronics Progress. 2016, 53(5): 051202.
周文振, 陈国良, 杜珊珊, 等. 一种聚类改进的迭代最近点配准算法 [J]. 激光与光电子学进展. 2016, 53(5): 051202.

【9】Han J D, Yin P, He Y Q, et al. Enhanced ICP for the registration of large-scale 3D environment models: an experimental study [J]. Sensors. 2016, 16(2): 228.

【10】Li R Z, Yang M, Tian Y, et al. Point cloud registration algorithm based on the ISS feature points combined with improved ICP algorithm [J]. Laser & Optoelectronics Progress. 2017, 54(11): 111503.
李仁忠, 杨曼, 田瑜, 等. 基于ISS特征点结合改进ICP的点云配准算法 [J]. 激光与光电子学进展. 2017, 54(11): 111503.

【11】Zhang Z, Xu H L, Yin H. A fast point cloud registration algorithm based on key point selection [J]. Laser & Optoelectronics Progress. 2017, 54(12): 121002.
张哲, 许宏丽, 尹辉. 一种基于关键点选择的快速点云配准算法 [J]. 激光与光电子学进展. 2017, 54(12): 121002.

【12】Lamine T M, Gokhool T, Checchin P, et al. CICP: cluster iterative closest point for sparse-dense point cloud registration [J]. Robotics and Autonomous Systems. 2018, 108: 66-86.

【13】Wang C, Shu Q, Yang Y X, et al. Quick registration algorithm of point clouds using structure feature [J]. Acta Optica Sinica. 2018, 38(9): 0911005.
王畅, 舒勤, 杨赟秀, 等. 利用结构特征的点云快速配准算法 [J]. 光学学报. 2018, 38(9): 0911005.

【14】Liu M, Shu Q, Yang Y X, et al. Three-dimensional point cloud registration based on independent component analysis [J]. Laser & Optoelectronics Progress. 2019, 56(1): 011203.
刘鸣, 舒勤, 杨赟秀, 等. 基于独立成分分析的三维点云配准算法 [J]. 激光与光电子学进展. 2019, 56(1): 011203.

【15】Zin?er T, Schmidt J, Niemann H. Point set registration with integrated scale estimation . [C]∥Eighth International Conference on Pattern Recognition and Image Processing, May 18-20, Minsk, Brlarus. [S.l.: s.n.]. 2005, 116-119.

【16】Du S Y, Zheng N N, Xiong L, et al. Scaling iterative closest point algorithm for registration of m-D point sets [J]. Journal of Visual Communication and Image Representation. 2010, 21(5): 442-452.

【17】Ying S H, Peng J G, Du S Y, et al. A scale stretch method based on ICP for 3D data registration [J]. IEEE Transactions on Automation Science and Engineering. 2009, 6(3): 559-565.

【18】Zhang Q, Li C K, Li J X, et al. Planar point cloud segmentation based on the weighted average of adjusted normal vector [J]. Geography and Geo-Information Science. 2015, 31(1): 45-48.
张强, 李朝奎, 李俊晓, 等. 一种改进的基于法矢方向调整的平面点云分割方法 [J]. 地理与地理信息科学. 2015, 31(1): 45-48.

【19】Fang J, Li C K, Zhang X C, et al. The segmentation of regular laser point cloud based on geometry feature Bulletin of Surveying and Mapping[J]. 0, 2016(8): 47-52.
方军, 李朝奎, 张新长, 等. 顾及几何特征的规则激光点云分割方法 测绘通报[J]. 0, 2016(8): 47-52.

引用该论文

Lu Sheng,Han Jungang,Wang Lianzhe,Tang Haipeng,Qi Quan,Feng Ningyu,Tang Shaojie. Research on Two-Stage Variable Scale Three-Dimensional Point Cloud Registration Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201503

卢升,韩俊刚,王连哲,唐海鹏,齐全,冯宁宇,汤少杰. 两阶段变尺度三维点云配准算法研究[J]. 激光与光电子学进展, 2020, 57(20): 201503

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF