首页 > 论文 > 中国激光 > 46卷 > 9期(pp:909001--1)

赝像-正像转换算法在全息体视图打印中的应用

Application of Pseudoscopic-Orthoscopic Conversion Algorithm in Holographic Stereogram Printing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

将适用于三维场景信息非对称采集和显示的赝像-正像转换(POC)算法应用于全息体视图打印,得到了采样平面与全息图平面的距离、采样间隔与全息单元尺寸比例不同时,采样图像和合成视差图像之间的像素匹配关系。分析了曝光光学系统参数和POC算法参数对体视图再现像视场角的影响,得到了场景深度和视场角之间的制约关系。实验通过在不同场景深度下三维物体的再现,验证了POC算法对全息体视图打印的适用性以及场景深度和视场角之间制约关系的正确性。实验结果表明,当场景深度较小时,再现像重影导致分辨率降低,并从理论上分析了全息体视图重影现象产生的原因。像素级精确的视差图像避免了数据误差对体视图再现质量的影响,对提高再现像分辨率有积极意义。

Abstract

The pseudoscopic-orthoscopic conversion (POC) algorithm, which is applicable to asymmetrical capture and display of three-dimensional (3D) scene information, is utilized to perform the holographic stereogram printing. The matching relationship between pixels on the sampled image and the synthetic parallax image is obtained under different distances between the sampling plane and the holographic plane and different ratios of sampling interval to holographic unit size. The influences of exposure optical system parameters and POC algorithm parameters on the field of view of the stereogram are also analyzed, and the relationship between scene depth and field of view is obtained. The experimental results demonstrate the applicability of POC algorithm to holographic stereogram printing and the validity of the relationship between scene depth and field of view by reconstructing 3D objects at different scene depths. The resolution is reduced because of the reconstructed image ghosting when the depth of the scene is small, and reasons for the ghosting of the holographic stereogram are also explained. The accurate parallax image at the pixel level avoids the influence of data error on the quality of holographic stereogram, and has positive significance in improving the resolution of the reconstructed image.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0909001

所属栏目:全息与信息处理

基金项目:国家重点研发计划、国家自然科学基金、全国优秀博士论文作者专项资助;

收稿日期:2019-03-15

修改稿日期:2019-05-17

网络出版日期:2019-09-01

作者单位    点击查看

张腾:陆军装甲兵学院信息通信系, 北京 100072
闫兴鹏:陆军装甲兵学院信息通信系, 北京 100072
王晨卿:陆军装甲兵学院信息通信系, 北京 100072
汪熙:陆军装甲兵学院信息通信系, 北京 100072
陈颂:陆军装甲兵学院信息通信系, 北京 100072
陈卓:陆军装甲兵学院信息通信系, 北京 100072
蒋晓瑜:陆军装甲兵学院信息通信系, 北京 100072

联系人作者:闫兴鹏(yanxp@foxmail.com)

备注:国家重点研发计划、国家自然科学基金、全国优秀博士论文作者专项资助;

【1】Kim S C, Dong X B and Kim E S. Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting. Scientific Reports. 5, (2015).

【2】Schnell M, Carney P S and Hillenbrand R. Synthetic optical holography for rapid nanoimaging. Nature Communications. 5, (2014).

【3】Takaki Y and Taira K. Speckle regularization and miniaturization of computer-generated holographic stereograms. Optics Express. 24(6), 6328-6340(2016).

【4】Yoshikawa H and Yamaguchi T. Review of holographic printers for computer-generated holograms. IEEE Transactions on Industrial Informatics. 12(4), 1584-1589(2016).

【5】Hong K, Park S G, Yeom J et al. Resolution enhancement of holographic printer using a hogel overlapping method. Optics Express. 21(12), 14047-14055(2013).

【6】Ishii N, Kato T and Abe J. A real-time dynamic holographic material using a fast photochromic molecule. Scientific Reports. 2, (2012).

【7】Wakunami K, Hsieh P Y, Oi R et al. Projection-type see-through holographic three-dimensional display. Nature Communications. 7, (2016).

【8】Yue Z J, Xue G L, Liu J et al. Nanometric holograms based on a topological insulator material. Nature Communications. 8, (2017).

【9】Bjelkhagen H and Brotherton-Ratcliffe D. Ultra-realistic imaging. (2016).

【10】Yamaguchi M, Ohyama N and Honda T. Holographic three-dimensional printer: new method. Applied Optics. 31(2), 217-222(1992).

【11】Halle M W. The generalized holographic stereogram. Boston: Massachusetts Institute of Technology. (1991).

【12】Jones A. McDowall I, Yamada H, et al. Rendering for an interactive 360° light field display. ACM Transactions on Graphics. 26(3), (2007).

【13】Sánchez A M and Prieto D V. Design, development, and implementation of a low-cost full-parallax holoprinter. Proceedings of SPIE. 10558, (2018).

【14】Su J, Yan X P, Huang Y Q et al. Progress in the synthetic holographic stereogram printing technique. Applied Sciences. 8(6), (2018).

【15】Su J, Yuan Q, Huang Y Q et al. Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images'''' segmentation and mosaicking. Optics Express. 25(19), 23523-23544(2017).

【16】Su J, Yan X P, Huang Y Q et al. Improvement of printing efficiency in holographic stereogram printing with the combination of a field lens and holographic diffuser. Applied Optics. 57(25), 7159-7166(2018).

【17】Su J, Yan X P, Jiang X Y et al. Characteristic and optimization of the effective perspective images'''' segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach. Scientific Reports. 8, (2018).

【18】Jung J H, Kim J and Lee B. Solution of pseudoscopic problem in integral imaging for real-time processing. Optics Letters. 38(1), 76-78(2013).

【19】Okano F, Hoshino H, Arai J et al. Real-time pickup method for a three-dimensional image based on integral photography. Applied Optics. 36(7), 1598-1603(1997).

【20】Martínez-Corral M, Javidi B, Martínez-Cuenca R et al. Formation of real, orthoscopic integral images by smart pixel mapping. Optics Express. 13(23), 9175-9180(2005).

【21】Navarro H, Martínez-Cuenca R, Saavedra G et al. 3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC). Optics Express. 18(25), 25573-25583(2010).

引用该论文

Teng Zhang,Xingpeng Yan,Chenqing Wang,Xi Wang,Song Chen,Zhuo Chen,Xiaoyu Jiang. Application of Pseudoscopic-Orthoscopic Conversion Algorithm in Holographic Stereogram Printing[J]. Chinese Journal of Lasers, 2019, 46(9): 0909001

张腾,闫兴鹏,王晨卿,汪熙,陈颂,陈卓,蒋晓瑜. 赝像-正像转换算法在全息体视图打印中的应用[J]. 中国激光, 2019, 46(9): 0909001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF