首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1024001--1)

空间目标褶皱材质BRDF建模方法

Bidirectional Reflectance Distribution Function Modeling Approach of Space Objects’ Fold Material

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由于受到外界环境的影响,卫星表面常常呈不规则的褶皱状,这会对其光学特性产生一定影响。故空间目标光学特性建模研究需要将表面褶皱考虑在内,但大量褶皱面元的存在会导致运算量剧增。在此将褶皱看作一种材质,提出基于宏观光学散射截面测量的双向反射分布函数(BRDF)生成方法,求得褶皱材质的BRDF数据,进一步利用误差逆传播(BP)神经网络建立了褶皱材质的BRDF模型,代替了复杂的褶皱建模过程,大大简化了计算,在保证精度的前提下解决了其实时性差的问题。同时,通过实验与仿真相结合的方式,将所设计的BRDF模型与传统BRDF模型进行对比,验证了所设计模型的误差远小于传统模型。

Abstract

Due to the influence of the external environment, the satellite''s surface is often irregularly folded, and these folds have some influences on the optical properties. So folds need to be taken into account in the modeling of the optical characteristics of space objects. However, a large number of surface cells in fold surface will lead to a dramatic increase in computational complexity. This paper considers pleats as a kind of ‘material’. A method based on macroscopic optical scattering cross section measurement is proposed to obtain the bidirectional reflectance distribution function (BRDF) data of the fold material. Furthermore, the error back propagation neural network is used to establish BRDF model of fold material, which replaces the complex modeling process of folds and greatly simplifies the calculation. The problem of poor real-time performance is solved under the acceptable accuracy. By combining the experiment with the simulation to compare the BRDF model designed in this paper with the traditional BRDF model, it is verified that the error of the model designed in this paper is much smaller than that of the traditional model.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.2

DOI:10.3788/AOS201939.1024001

所属栏目:表面光学

基金项目:国家自然科学基金;

收稿日期:2019-03-04

修改稿日期:2019-05-31

网络出版日期:2019-10-01

作者单位    点击查看

汪夏:航天工程大学研究生院, 北京 101416
张雅声:航天工程大学航天指挥学院, 北京 101416
徐灿:航天工程大学航天指挥学院, 北京 101416
李鹏:航天工程大学研究生院, 北京 101416
张峰:航天工程大学研究生院, 北京 101416

联系人作者:汪夏(627176089@qq.com); 张雅声(lizhizys@263.net);

备注:国家自然科学基金;

【1】Jiang J S. Multilayer insulation materials and their application to spacecrafts [J]. Aerospace Materials & Technology. 2000, 30(4): 17-25.
江经善. 多层隔热材料及其在航天器上的应用 [J]. 宇航材料工艺. 2000, 30(4): 17-25.

【2】Wu X D. Influence of multilayer heat insulation material on infrared feature of a satellite [J]. Infrared and Laser Engineering. 2015, 44(6): 1721-1725.
吴晓迪. 多层隔热材料对卫星红外特性的影响 [J]. 红外与激光工程. 2015, 44(6): 1721-1725.

【3】Fan H L. Spacecraft thermal control materials [J]. Aerospace Materials & Technology. 2007, 37(6): 7-10.
范含林. 航天器热控材料的应用和发展 [J]. 宇航材料工艺. 2007, 37(6): 7-10.

【4】Yang M, Wu X D, Lü X Y et al. Numerical analysis on the infrared radiation of multilayer insulation outside the satellite [J]. Laser & Infrared. 2009, 39(12): 1288-1291.
杨明, 吴晓迪, 吕相银 等. 卫星表面隔热材料红外辐射的数值分析 [J]. 激光与红外. 2009, 39(12): 1288-1291.

【5】Li P, Li Z and Xu C. Influence of covering material wrinkles on space object''''s optical scattering characteristics [J]. Chinese Journal of Space Science. 2018, 38(6): 934-943.
李鹏, 李智, 徐灿. 空间目标表面包覆材料褶皱对光散射特性的影响 [J]. 空间科学学报. 2018, 38(6): 934-943.

【6】Wu Y, Yang L, Fan J Y et al. A method of modeling spatial object''''s visible-light scattering characteristic [J]. Journal of Harbin University of Science and Technology. 2009, 14(2): 82-85.
吴英, 杨玲, 范剑英 等. 空间目标的可见光散射特性建模与仿真研究 [J]. 哈尔滨理工大学学报. 2009, 14(2): 82-85.

【7】Shan B, Liang Y Q and Li H N. Attitude and angular speed estimation of spacial objects based on photometric observation [J]. Acta Optica Sinica. 2017, 37(5): 0512002.
单斌, 梁勇奇, 李恒年. 基于光度观测的空间目标姿态与角速度估计 [J]. 光学学报. 2017, 37(5): 0512002.

【8】Hou Q Y, Gong J N, Fan Z P et al. Inversion and reconstruction of the macroscopic photometric characterization model for on-orbit space object [J]. Acta Physica Sinica. 2017, 66(15): 154201.
侯晴宇, 巩晋南, 樊志鹏 等. 在轨空间目标光学特性宏观表征模型的反演重构 [J]. 物理学报. 2017, 66(15): 154201.

【9】Li Y J, Jin G and Zhong X. Modeling and simulation of visible light scattering properties of spatial object using STK [J]. Chinese Journal of Space Science. 2013, 33(2): 188-193.
李艳杰, 金光, 钟兴. 基于STK的空间目标可见光散射特性建模与仿真 [J]. 空间科学学报. 2013, 33(2): 188-193.

【10】Zhang F, Zhang Y S and Xu C. Optical scattering characteristics of satellite with fold surface [J]. Laser & Optoelectronics Progress. 2018, 55(5): 052401.
张峰, 张雅声, 徐灿. 卫星褶皱表面的光学散射特性 [J]. 激光与光电子学进展. 2018, 55(5): 052401.

【11】Xu C, Zhang Y S, Li P et al. Calculation of optical cross section areas of spatial objects based on OpenGL picking technique [J]. Acta Optica Sinica. 2017, 37(7): 0720001.
徐灿, 张雅声, 李鹏 等. 基于OpenGL拾取技术的空间目标光学横截面积计算 [J]. 光学学报. 2017, 37(7): 0720001.

【12】Liu C H, Li Z and Xu C. A modified Phong model for Fresnel reflection phenomenon of commonly used materials for space targets [J]. Laser & Optoelectronics Progress. 2017, 54(10): 102901.
刘程浩, 李智, 徐灿. 针对空间目标常用材质菲涅耳反射现象的改进Phong模型 [J]. 激光与光电子学进展. 2017, 54(10): 102901.

【13】Han Y, Sun H Y, Li Y C et al. Simulation of space object laser radar cross section [J]. Infrared and Laser Engineering. 2010, 39(5): 819-823.
韩意, 孙华燕, 李迎春 等. 空间目标激光雷达散射截面仿真分析 [J]. 红外与激光工程. 2010, 39(5): 819-823.

【14】Han Y and Sun H Y. Advances in space target optical scattering character research [J]. Infrared and Laser Engineering. 2013, 42(3): 758-766.
韩意, 孙华燕. 空间目标光学散射特性研究进展 [J]. 红外与激光工程. 2013, 42(3): 758-766.

【15】Ackermann M R. McGraw J T, Martion J B, et al. Blind search for micro satellites in LEO: optical signatures and search strategies . [C]∥2003 Advanced Maui Optical and Space Surveillance Technologies Conference, September 7-13, 2013, Maui Air Force Station, HI. United States: [s. n.]. 2003, 1-24.

【16】Zhou J R, Wei W and Wang C L. Overview of BRDF model research Electronic Technology & Software Engineering[J]. 0, 2016(18): 109-110.
周璟然, 韦巍, 王成龙. BRDF模型研究综述 电子技术与软件工程[J]. 0, 2016(18): 109-110.

【17】Li Z, Zhao Z X and Zheng J. Momentum gradient descent method to train the BP network Inner Mongolia Science Technology and Economy[J]. 0, 2006(12): 86-88.
李智, 赵子先, 郑君. 动量梯度下降法训练BP网络 内蒙古科技与经济[J]. 0, 2006(12): 86-88.

【18】Liu C H, Li Z, Xu C et al. BRDF model for commonly used materials of space targets based on deep neural network [J]. Acta Optica Sinica. 2017, 37(11): 1129001.
刘程浩, 李智, 徐灿 等. 基于深度神经网络的空间目标常用材质BRDF模型 [J]. 光学学报. 2017, 37(11): 1129001.

【19】Wu Z S, Xie D H, Xie P H et al. Modeling reflectance function from rough surface and algorithms [J]. Acta Optica Sinica. 2002, 22(8): 897-901.
吴振森, 谢东辉, 谢品华 等. 粗糙表面激光散射统计建模的遗传算法 [J]. 光学学报. 2002, 22(8): 897-901.

引用该论文

Wang Xia,Zhang Yasheng,Xu Can,Li Peng,Zhang Feng. Bidirectional Reflectance Distribution Function Modeling Approach of Space Objects’ Fold Material[J]. Acta Optica Sinica, 2019, 39(10): 1024001

汪夏,张雅声,徐灿,李鹏,张峰. 空间目标褶皱材质BRDF建模方法[J]. 光学学报, 2019, 39(10): 1024001

被引情况

【1】付琳,洪海波,王晰,肖高博,任明俊. 基于逆向反射模型的非朗伯光度立体视觉. 光学学报, 2020, 40(5): 520001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF