首页 > 论文 > Photonics Research > 9卷 > 1期(pp:66-72)

Program-controlled single soliton microcomb source

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Soliton microcombs (SMCs) are spontaneously formed in a coherently pumped high-quality microresonator, which provides a new tool for use as an on-chip frequency comb for applications of high-precision metrology and spectroscopy. However, generation of SMCs seriously relies on advanced experimental techniques from professional scientists. Here, we experimentally demonstrate a program-controlled single SMC source where the intracavity thermal effect is timely balanced using an auxiliary laser during single SMC generation. The microcomb power is adopted as the criteria for microcomb states discrimination and a forward and backward thermal tuning technique is employed for the deterministic single SMC generation. Further, based on a closed-loop control system, the repetition rate stability of the SMC source improved more than 20 times and the pump frequency can be continuously tuned by simply changing the operation temperature. The reliability of the SMC source is verified by consecutive 200 generation trials and maintaining over 10 h. We believe the proposed SMC source will have significant promising influences in future SMC-based application development.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.408612

所属栏目:Research Articles

基金项目:National Natural Science Foundation of China10.13039/501100001809; National Key Research and Development Program of China10.13039/501100012166; Strategic Priority Research Program of the Chinese Academy of Sciences;

收稿日期:2020-08-27

录用日期:2020-11-22

网络出版日期:2020-11-22

作者单位    点击查看

Xinyu Wang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China;University of Chinese Academy of Sciences, Beijing 100049, China
Peng Xie:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China;University of Chinese Academy of Sciences, Beijing 100049, China
Weiqiang Wang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China;University of Chinese Academy of Sciences, Beijing 100049, China;e-mail: wwq@opt.ac.cn
Yang Wang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China;University of Chinese Academy of Sciences, Beijing 100049, China
Zhizhou Lu:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China;University of Chinese Academy of Sciences, Beijing 100049, China
Leiran Wang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China;University of Chinese Academy of Sciences, Beijing 100049, China
Sai T. Chu:Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
Brent E. Little:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China;University of Chinese Academy of Sciences, Beijing 100049, China
Wei Zhao:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China;University of Chinese Academy of Sciences, Beijing 100049, China
Wenfu Zhang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China;University of Chinese Academy of Sciences, Beijing 100049, China;e-mail: wfuzhang@opt.ac.cn

联系人作者:Weiqiang Wang(wwq@opt.ac.cn); Wenfu Zhang(wfuzhang@opt.ac.cn);

备注:National Natural Science Foundation of China10.13039/501100001809; National Key Research and Development Program of China10.13039/501100012166; Strategic Priority Research Program of the Chinese Academy of Sciences;

【1】P. Grelu and N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics. 6, 84-92(2012).

【2】M. E. Fermann and I. Hartl. Ultrafast fibre lasers. Nat. Photonics. 7, 868-874(2013).

【3】F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit and M. Haelterman. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics. 4, 471-476(2010).

【4】T. J. Kippenberg, A. L. Gaeta, M. Lipson and M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science. 361, (2018).

【5】W. Wang, L. Wang and W. Zhang. Advances in soliton microcomb generation. Adv. Photon. 2, (2020).

【6】N. Picqué and T. W. H?nsch. Frequency comb spectroscopy. Nat. Photonics. 13, 146-157(2019).

【7】M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi and K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science. 354, 600-603(2016).

【8】A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta and M. Lipson. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, (2018).

【9】J. Riemensberger, A. Lukashchuk, M. Karpov, W. Weng, E. Lucas, J. Liu and T. J. Kippenberg. Massively parallel coherent laser ranging using a soliton microcomb. Nature. 581, 164-170(2020).

【10】M.-G. Suh and K. J. Vahala. Soliton microcomb range measurement. Science. 359, 884-887(2018).

【11】J. Wang, Z. Lu, W. Wang, F. Zhang, J. Chen, Y. Wang, X. Zhao, J. Zheng, S. T. Chu, W. Zhao, B. E. Little, X. Qu and W. Zhang. Long-distance ranging with high precision using a soliton microcomb. Photon. Res. 8, 1964-1972(2020).

【12】J. Liu, E. Lucas, A. S. Raja, J. He, J. Riemensberger, R. N. Wang, M. Karpov, H. Guo, R. Bouchand and T. J. Kippenberg. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics. 14, 486-491(2020).

【13】W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel and L. Maleki. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, (2015).

【14】M. Tan, X. Xu, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell and D. J. Moss. Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr micro-comb. J. Lightwave Technol. 37, 6097-6104(2019).

【15】D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams and S. B. Papp. An optical-frequency synthesizer using integrated photonics. Nature. 557, 81-85(2018).

【16】B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell and D. J. Moss. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, (2020).

【17】F.-X. Wang, W. Wang, R. Niu, X. Wang, C.-L. Zou, C.-H. Dong, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Zhang, W. Zhao, Z.-F. Han, G.-C. Guo and W. Chen. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev. 14, (2020).

【18】P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg and C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature. 546, 274-279(2017).

【19】S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala and S. A. Diddams. Microresonator frequency comb optical clock. Optica. 1, 10-14(2014).

【20】T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky and T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics. 8, 145-152(2014).

【21】H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky and T. J. Kippenberg. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94-102(2017).

【22】T. Wildi, V. Brasch, J. Liu, T. J. Kippenberg and T. Herr. Thermally stable access to microresonator solitons via slow pump modulation. Opt. Lett. 44, 4447-4450(2019).

【23】J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams and S. B. Papp. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett. 121, (2018).

【24】J. Liu, H. Tian, E. Lucas, A. S. Raja, G. Lihachev, R. N. Wang, J. He, T. Liu, M. H. Anderson, W. Weng, S. A. Bhave and T. J. Kippenberg. Monolithic piezoelectric control of soliton microcombs. Nature. 583, 385-390(2020).

【25】S. Wan, R. Niu, Z.-Y. Wang, J.-L. Peng, M. Li, J. Li, G.-C. Guo, C.-L. Zou and C.-H. Dong. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photon. Res. 8, 1342-1349(2020).

【26】H.-J. Chen, Q.-X. Ji, H. Wang, Q.-F. Yang, Q.-T. Cao, Q. Gong, X. Yi and Y.-F. Xiao. Chaos-assisted two-octave-spanning microcombs. Nat. Commun. 11, (2020).

【27】C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson and A. L. Gaeta. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565-2568(2016).

【28】W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang and W. Zhao. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett. 43, 2002-2005(2018).

【29】D. C. Cole, J. R. Stone, M. Erkintalo, K. Y. Yang, X. Yi, K. J. Vahala and S. B. Papp. Kerr-microresonator solitons from a chirped background. Optica. 5, 1304-1310(2018).

【30】X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh and K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica. 2, 1078-1085(2015).

【31】V. Brasch, M. Geiselmann, M. H. P. Pfeiffer and T. J. Kippenberg. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express. 24, 29312-29320(2016).

【32】X. Yi, Q.-F. Yang, K. Youl Yang and K. Vahala. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037-2040(2016).

【33】B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X. Ji, T. J. Kippenberg, K. Vahala and J. E. Bowers. Integrated turnkey soliton microcombs. Nature. 582, 365-369(2020).

【34】N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky and M. L. Gorodetsky. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics. 12, 694-698(2018).

【35】H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu and C. W. Wong. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8, (2019).

【36】R. Niu, S. Wan, S.-M. Sun, T.-G. Ma, H.-J. Chen, W.-Q. Wang, Z.-Z. Lu, W.-F. Zhang, G.-C. Guo, C.-L. Zou and C.-H. Dong. Repetition rate tuning of soliton in microrod resonators. (2018).

【37】Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C.-L. Zou, C.-H. Dong, B. Zhao and W. Zhao. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv. 9, (2019).

【38】X. Yi, Q.-F. Yang, K. Y. Yang and K. Vahala. Imaging soliton dynamics in optical microcavities. Nat. Commun. 9, (2018).

【39】X. Xue, X. Zheng and B. Zhou. Soliton regulation in microcavities induced by fundamental-second-harmonic mode coupling. Photon. Res. 6, 948-953(2018).

【40】U. Andral, R. Si Fodil, F. Amrani, F. Billard, E. Hertz and P. Grelu. Fiber laser mode locked through an evolutionary algorithm. Optica. 2, 275-278(2015).

【41】G. Pu, L. Yi, L. Zhang and W. Hu. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica. 6, 362-369(2019).

【42】G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington and N. R. Newbury. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica. 1, 290-298(2014).

【43】M. Liu, R. Tang, A.-P. Luo, W.-C. Xu and Z.-C. Luo. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers. Photon. Res. 6, C1-C7(2018).

引用该论文

Xinyu Wang, Peng Xie, Weiqiang Wang, Yang Wang, Zhizhou Lu, Leiran Wang, Sai T. Chu, Brent E. Little, Wei Zhao, and Wenfu Zhang, "Program-controlled single soliton microcomb source," Photonics Research 9(1), 66-72 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF