首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:180002--1)


Progresson Erbium-Doped Mid-Infrared Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


3 μm附近中红外激光在激光医学、生物分子学以及光电对抗等科学和技术领域具有极高的应用前景和价值。介绍了中红外激光的产生方式和各种中红外激光器的特点;结合Er 3+离子能级结构,重点讨论了掺铒中红外激光器主要转换过程和存在的问题;总结了不同基质掺铒中红外激光器的研究进展;展望了高效率、高功率掺铒中红外激光器需要解决的问题及可能的技术途径。


The 3-μm mid-infrared laser has significant application prospects and value in scientific and technical applications such as laser medicine, biomolecular, and optoelectronic countermeasures. This paper describes the generation of mid-infrared lasers and the characteristics of various mid-infrared lasers. Based on the Er 3+ ion level structure, the main conversion process and existing problems of erbium-doped mid-infrared lasers are discussed herein. The research progress of erbium-doped mid-infrared lasers based on different substrates is summarized. The problems that need to be solved and the possible technical approaches for high-efficiency, high-power erbium-doped mid-infrared lasers are envisioned.









作者单位    点击查看

方聪:北京工业大学激光工程研究院, 北京 100124
王思博:北京工业大学激光工程研究院, 北京 100124
惠勇凌:北京工业大学激光工程研究院, 北京 100124
姜梦华:北京工业大学激光工程研究院, 北京 100124
雷訇:北京工业大学激光工程研究院, 北京 100124
李强:北京工业大学激光工程研究院, 北京 100124

联系人作者:雷訇(leihong@bjut.edu.cn); 李强(ncltlq@bjut.edu.cn);


【1】Jackson S D. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics. 6(7), 423-431(2012).

【2】Hale G M and Querry M R. Optical constants of water in the 200-nm to 200-μm wavelength region. Applied Optics. 12(3), 555-563(1973).

【3】Arbabzadah E A, Phillips C C and Damzen M J. Free-running and Q-switched operation of a diode pumped Er∶YSGG laser at the 3 μm transition. Applied Physics B. 111(2), 333-339(2013).

【4】Lippert E, Fonnum H, Arisholm G et al. A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator. Optics Express. 18(25), 26475-26483(2010).

【5】Bandyopadhyay N, Bai Y, Gokden B et al. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3. 76 μm. Applied Physics Letters. 97(13), (2010).

【6】Yi A P, Liu J R, Tang Y et al. Electrically initiated repetitive-pulsed non-chain HF lasers. Optics and Precision Engineering. 19(2), 360-366(2011).
易爱平, 刘晶儒, 唐影 等. 电激励重复频率非链式HF激光器. 光学精密工程. 19(2), 360-366(2011).

【7】Yu Q X, Li H and Lin J X. A CO-overtone laser based photoacoustic spectrometer for trace gas detection. Journal of Optoelectronics·laser. 14(7), 669-671(2003).
于清旭, 李红, 林钧岫. 基于泛频CO激光器的微量气体光声光谱仪. 光电子·激光. 14(7), 669-671(2003).

【8】Adamovich I V, Goshe M, Lempert W R et al. Continuous-wave electrically excited carbon monoxide laser operating on first overtone infrared bands: 2.5- to 4.0-microns kinetic modeling and design. Proceedings of SPIE. 5448, 322-342(2004).

【9】Dominic F, Martin B, Guillaume A et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm. Optics Letters. 36(7), 1104-1106(2011).

【10】Dinerman B J and Moulton P F. 3-μm CW laser operations in erbium-doped YSGG, GGG, and YAG. Optics Letters. 19(15), 1143-1145(1994).

【11】Ren G G. FEL opened door for extensive applications. Laser & Optoelectronics Progress. 42(1), 3-6(2005).
任国光. 自由电子激光器为广泛应用开启大门. 激光与光电子学进展. 42(1), 3-6(2005).

【12】Bao L B. Study of Er∶YAG laser application in biomedicine. Applied Laser. 20(6), 274-276, 280(2000).
鲍良弼. Er∶YAG激光在生物医学中的应用研究. 应用激光. 20(6), 274-276, 280(2000).

【13】Jia L Q, Shen G T, Guo X Y et al. A comparative study of the spectra of high and low doped Er∶YAG Journal of East China Normal University(Natural Science). 1994(3), 43-47(0).
贾立群, 沈国土, 郭祥义 等. 高掺铒和低掺铒YAG晶体的光谱比较研究 华东师范大学学报(自然科学版). 1994(3), 43-47(0).

【14】Shen R S, Zhang Y S and Du G T. Latest development of fiber lasers. Semiconductor Optoelectronics. 30(1), 1-5(2009).
申人升, 张玉书, 杜国同. 光纤激光器研究进展. 半导体光电. 30(1), 1-5(2009).

【15】Chen H, Li J F, Ou Z H et al. Progress of mid-infrared fiber lasers. Laser & Optoelectronics Progress. 48(11), (2011).
陈昊, 李剑峰, 欧中华 等. 中红外光纤激光器的研究进展. 激光与光电子学进展. 48(11), (2011).

【16】T bben H. Room temperature CW fibre laser at 3.5 μm in Er 3+-doped ZBLAN glass . Electronics Letters. 28(14), 1361-1362(1992).

【17】Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser. Optics Letters. 34(20), 3062-3064(2009).

【18】Shen Y L, Huang K, Zhou S Q et al. 10 W-level high efficiency single-mode mid-infrared 2.8 μm fiber laser. Chinese Journal of Lasers. 42(5), (2015).
沈炎龙, 黄珂, 周松青 等. 10 W级高效率单模中红外2.8 μm光纤激光器. 中国激光. 42(5), (2015).

【19】Qin Z P, Xie G Q, Ma J G et al. Mid-infrared Er∶ZBLAN fiber laser reaching 3.68 μm wavelength. Chinese Optics Letters. 15(11), (2017).

【20】Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm. Optics Letters. 40(12), 2882-2885(2015).

【21】Jackson S D . High-power erbium cascade fibre laser. Electronics Letters. 45(16), 830-832(2009).

【22】Ayd n Y O, Fortin V, Maes F et al. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica. 4(2), 235-238(2017).

【23】Tang P H, Qin Z P, Liu J et al. Watt-level passively mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm . Optics Letters. 40(21), 4855-4858(2015).

【24】Qin Z P, Xie G Q, Zhang H et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm. Optics Express. 23(19), 24713-24718(2015).

【25】Shen Y L, Wang Y S, Luan K P et al. Watt-level passively Q-switched heavily Er 3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror . Scientific Reports. 6, (2016).

【26】Wu M, Liu J, Li Y et al. Stable and efficient pulsed mid-infrared laser generation from an Er 3+-doped ZBLAN fiber laser . Journal of Russian Laser Research. 39(2), 177-181(2018).

【27】Qin Z P, Xie G Q, Zhao C J et al. Black phosphorus mode-locked Er-doped ZBLAN fiber laser at 2. -09-22)[2019-01-10]. https:∥arxiv. org/abs/1509, (2015).

【28】Shen Y L, Wang Y S, Chen H W et al. Wavelength-tunable passively mode-locked mid-infrared Er 3+-doped ZBLAN fiber laser . Scientific Reports. 7, (2017).

【29】Qin Z P, Hai T, Xie G Q et al. Black phosphorus Q-switched and mode-locked mid-infrared Er∶ZBLAN fiber laser at 3. 5 μm wavelength. Optics Express. 26(7), 8224-8231(2018).

【30】Tsai T Y, Fang Y C, Tsao H X et al. Passively cascade-pulsed erbium ZBLAN all-fiber laser. Optics Express. 20(12), 12787-12792(2012).

【31】Bahrololoomi Z, Birang R, Chiniforush N et al. Thermal changes of root surface of anterior primary teeth in pulpectomy with Er∶YAG laser. Journal of Dentistry. 15(3), 178-186(2018).

【32】de Azevedo C S, Carneiro P M A, Aranha A C C et al. . Long-term effect of Er∶ YAG laser on adhesion to caries-affected dentin. Lasers in Dental Science. 2(1), 19-28(2018).

【33】Matys J, Flieger R, Tenore G et al. Er∶YAG laser, piezosurgery, and surgical drill for bone decortication during orthodontic mini-implant insertion: primary stability analysis—an animal study. Lasers in Medical Science. 33(3), 489-495(2018).

【34】Stoneman R C and Esterowitz L. Efficient resonantly pumped 2.8-μm Er 3+∶GSGG laser . Optics Letters. 17(11), 816-818(1992).

【35】Wu Z H, Sun D L, Wang S Z et al. Performance of a 967 nm CW diode end-pumped Er∶GSGG laser at 2. 79 μm. Laser Physics. 23(5), (2013).

【36】Dinerman B J and Moulton P F. 3-μm CW laser operations in erbium-doped YSGG, GGG, and YAG. Optics Letters. 19(15), 1143-1145(1994).

【37】Luo J Q, Sun D L, Zhang Q L et al. Growth and LD pumped laser performance of Er∶YSGG mid-IR laser crystal. Journal of Synthetic Crystals. 41(3), 564-567(2012).
罗建乔, 孙敦陆, 张庆礼 等. 中红外激光晶体Er∶YSGG的生长及LD抽运的激光性能. 人工晶体学报. 41(3), 564-567(2012).

【38】Meister J, Franzen R, Apel C et al. Multireflection pumping concept for miniaturized diode-pumped solid-state lasers. Applied Optics. 43(31), 5864-5869(2004).

【39】Liu J S. Development of 2.79 μm Cr, Er∶YSGG solid state laser. Infrared and Laser Engineering. 37(2), 217-220, 225(2008).
刘金生. 2.79 μm Cr, Er∶YSGG固体激光器发展现状. 红外与激光工程. 37(2), 217-220, 225(2008).

【40】Maak P, Jakab L, Richter P et al. Efficient acousto-optic Q switching of Er∶YSGG lasers at 2.79-μm wavelength. Applied Optics. 39(18), 3053-3059(2000).

【41】Wang T J, He Q Y, Gao J Y et al. Efficient electrooptically Q-switched Er∶Cr∶YSGG laser oscillator-amplifier system with a Glan-Taylor prism polarizer. Laser Physics. 16(12), 1605-1609(2006).

【42】Wang L, Yang J W, Wu X Y et al. 2.79 μm narrow pulse, high peak power electro-optical Q-switched Cr, Er∶YSGG laser. Chinese Journal of Lasers. 40(1), (2013).
王礼, 杨经纬, 吴先友 等. 2. 79 μm窄脉冲、高峰值功率电光调Q Cr, Er∶YSGG激光器. 中国激光. 40(1), (2013).

【43】Shen B J, Kang H X, Jie L et al. Research on laser diode end-pumped Er∶YSGG/YSGG composited crystal at 2.79 μm. Proceedings of SPIE. 9294, (2014).

【44】Shen B J, Kang H X, Chen P et al. Performance of continuous-wave laser-diode side-pumped Er∶YSGG slab lasers at 2.79 μm. Applied Physics B. 121(4), 511-515(2015).

【45】Jensen T. Chai B H T, Diening A, et al. Investigation of diode-pumped 2.8-μm Er∶LiYF4 lasers with various doping levels. Optics Letters. 21(8), 585-587(1996).

【46】Inochkin M V, Nazarov V V, Sachkov D Y et al. Dynamics of the lasing spectrum of a 3-μm Er∶YLF laser with semiconductor pumping. Journal of Optical Technology. 76(11), 720-724(2009).

【47】Inochkin M, Khloponin L, Khramov V et al. High-efficiency diode-pumped Er∶YLF laser with multi-wavelength generation. Proceedings of SPIE. 8235, (2012).

【48】Han J F, Yang G L, Yang Y et al. Growth and bonding technology of YLF laser crystals. Journal of Synthetic Crystals. 47(12), 2452-2456(2018).
韩剑锋, 杨国利, 杨宇 等. 氟化钇锂激光晶体生长与键合技术研究. 人工晶体学报. 47(12), 2452-2456(2018).

【49】Boulanger P L, Doualan J L, Girard S et al. Excited-state absorption spectroscopy of Er 3+-doped Y3Al5O12, YVO4, and phosphate glass . Physical Review B. 60(16), 11380-11390(1999).

【50】Zharikov E V, Zhekov V I, Kulevskii L A et al. Stimulated emission from Er 3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm . Soviet Journal of Quantum Electronics. 4(8), 1039-1040(1975).

【51】Zhang X R, Fan R Y, Wu G Z et al. The damage of dielectric mirrors from 2.94 μm laser beams in YAG∶Er 3+ crystal . Laser Technology. 15(6), 382-384(1991).
张秀荣, 范瑞英, 吴光照 等. 波长为2.94 μm激光束对腔膜的损伤. 激光技术. 15(6), 382-384(1991).

【52】Jelínková H, ulc J, Koranda P et al. LiNbO3 Pockels cell for Q-switch of Er∶YAG laser. Laser Physics Letters. 1(2), 59-64(2004).

【53】Eichler H J, Liu B, Kayser M et al. Er∶YAG-laser at 2.94 μm Q-switched by a FTIR-shutter with silicon output coupler and polarizer. Optical Materials. 5(4), 259-265(1996).

【54】Skorczakowski M, Zajac A and Swiderski J. 2.94 μm electro-optically Q-switched Er∶YAG laser with high output energy. [C]∥Advanced Solid-State Photonics 2005, February 6-9, 2005, Vienna, Austria. Washington, D.C.: OSA. WB7, (2005).

【55】Leng J S. Study on LD pumped Er∶YAG laser. Changchun: Changchun University of Science and Technology. (2013).
冷金松. LD抽运Er∶YAG激光器研究. 长春: 长春理工大学. (2013).

【56】Liu Z H and Meng Q J. Study of high-repetition-rate 2.94 μm Er 3+∶YAG laser . Acta Optica Sinica. 28(s1), 32-34(2008).
刘志红, 孟庆杰. 高重频2.94 μm Er∶YAG激光器的研究. 光学学报. 28(s1), 32-34(2008).

【57】Ma M J. Research of electro-optically Q-switched Er∶YAG laser. Hefei: Hefei University of Technology. (2010).
马明俊. 掺铒YAG调Q激光系统研究. 合肥: 合肥工业大学. (2010).

【58】Bizjak A, Neme K and Mo ina J. Rotating-mirror Q-switched Er∶YAG laser for optodynamic studies. Strojni ki Vestnik-Journal of Mechanical Engineering. 57(1), 3-10(2011).

【59】Hamilton C E, Beach R J, Sutton S B et al. 1-W average power levels and tunability from a diode-pumped 2.94-μm Er∶YAG oscillator. Optics Letters. 19(20), 1627-1629(1994).

【60】Ziolek C, Ernst H, Will G F et al. High-repetition-rate, high-average-power, diode-pumped 2.94-μm Er∶YAG laser. Optics Letters. 26(9), 599-601(2001).

【61】Harlander M, Heinrich A, Hagen C et al. High-brightness diode-pumped Er∶YAG laser system at 2.94 μm with 400 W peak power. Proceedings of SPIE. 8959, (2014).

【62】Messner M, Heinrich A, Hagen C et al. High brightness diode pumped Er∶YAG laser system at 2.94 μm with nearly 1 kW peak power. Proceedings of SPIE. 9726, (2016).

【63】Xu Z, Wang P Y, Liu W F et al. 2.94 μm diode side pumped Er∶YAG laser. Proceedings of SPIE. 10254, (2017).

【64】Chen D W, Fincher C L, Rose T S et al. Diode-pumped 1-W continuous-wave Er∶YAG 3-μm laser. Optics Letters. 24(6), 385-387(1999).

【65】Voronov A A, Kozlovskii V I, Korostelin Y V et al. Passive Q-switching of the diode-pumped Er∶YAG laser cavity with the Q-switch based on the Fe 2+∶ZnSe crystal . Bulletin of the Lebedev Physics Institute. 37(6), 169-172(2010).

【66】Sanamyan T. Efficient cryogenic mid-IR and eye-safe Er∶YAG laser. Journal of the Optical Society of America B. 33(11), D1-D6(2016).


Fang Cong,Wang Sibo,Hui Yongling,Jiang Menghua,Lei Hong,Li Qiang. Progresson Erbium-Doped Mid-Infrared Laser[J]. Laser & Optoelectronics Progress, 2019, 56(18): 180002

方聪,王思博,惠勇凌,姜梦华,雷訇,李强. 掺铒中红外激光器的进展[J]. 激光与光电子学进展, 2019, 56(18): 180002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF