首页 > 论文 > 中国激光 > 47卷 > 9期(pp:903001--1)

基于混合石墨烯-二氧化钒超材料的太赫兹可调宽带吸收器

Broadband Tunable Terahertz Absorber Based on Hybrid Graphene-Vanadium Dioxide Metamaterials

李辉   余江   陈哲  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于混合石墨烯-二氧化钒超材料的可切换多功能太赫兹宽带吸收器的有效设计。由于单元结构的对称性,该吸收器在电磁波垂直入射时具有极化不敏感特性,并且在宽入射角范围内仍能保持良好的吸收性能。数值仿真结果表明:利用相变材料二氧化钒独特的从绝缘体到全金属态的过渡特性,通过调节其电导率可以动态地调谐宽频吸收谱的幅值。通过施加外部偏置电压来调整石墨烯的费米能级,可将宽频吸收光谱的峰值吸收率从0.226调整至0.992。通过同时改变两个独立可控的参数(二氧化钒的电导率和石墨烯的费米能级),所提出的器件能够在宽频范围内的透明绝缘介质、全反射器和宽带吸收器之间切换。所设计的系统可扩展至红外和可见光波段,为实现高性能太赫兹设备提供了一种新的设计思路。

Abstract

We proposed an effective design of multifunctional switchable broadband terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials. Due to the symmetry of the unit cell, the absorber has polarization-insensitive properties when electromagnetic waves are incident perpendicularly, and can still maintain excellent absorption performance over a wide range of incident angles. Numerical simulation results show that the amplitude of the broadband absorption (from 1.69 THz to 3.21 THz) can be dynamically adjusted by adjusting the conductivity of the vanadium dioxide due to its unique transition characteristics from insulator to metal. Furthermore, by applying an external bias voltage to adjust the Fermi energy of graphene, the peak absorptance of the proposed absorber in the same broadband can be dynamically tuned from 0.226 to 0.992. By altering the two independently controllable parameters (the conductivity of vanadium dioxide and graphene''s Fermi energy) simultaneously, the proposed device can be switched among a transparent insulating dielectric, a perfect reflector, and a broadband absorber in a wide frequency range. The designed system can be extended to the infrared and visible bands, offering a new method for high-performance terahertz devices.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TB34

DOI:10.3788/CJL202047.0903001

所属栏目:材料与薄膜

基金项目:国家自然科学基金;

收稿日期:2020-04-09

修改稿日期:2020-04-23

网络出版日期:2020-09-01

作者单位    点击查看

李辉:云南大学信息学院, 云南 昆明 650500
余江:云南大学信息学院, 云南 昆明 650500
陈哲:云南大学信息学院, 云南 昆明 650500

联系人作者:余江(yujiang@ynu.edu.cn)

备注:国家自然科学基金;

【1】Clough B, Dai J M, Zhang X C. Laser air photonics: beyond the terahertz gap [J]. Materials Today. 2012, 15(1/2): 50-58.

【2】Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber [J]. Physical Review Letters. 2008, 100(20): 207402.

【3】Long Y B, Shen L, Xu H T, et al. Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals [J]. Scientific Reports. 2016, 6: 32312.

【4】Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization [J]. Applied Physics Letters. 2009, 95(24): 241111.

【5】Bao Z Y, Wang J C, Hu Z D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials [J]. Optics Express. 2019, 27(22): 31435-31445.

【6】Bai J J, Ge M L, Xing H Y, et al. Broadband terahertz metamaterial absorber based on double composite structure layers [J]. Chinese Journal of Lasers. 2019, 46(6): 0614034.
白晋军, 葛梅兰, 邢海英, 等. 基于双复合结构层的宽带太赫兹超材料吸收体 [J]. 中国激光. 2019, 46(6): 0614034.

【7】Zhang Y B, Liu W W, Li Z C, et al. Ultrathin polarization-insensitive wide-angle broadband near-perfect absorber in the visible regime based on few-layer MoS2 films [J]. Applied Physics Letters. 2017, 111(11): 111109.

【8】Chen S Q, Cheng H, Yang H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime [J]. Applied Physics Letters. 2011, 99(25): 253104.

【9】Zhao Y T, Wu B, Huang B J, et al. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface [J]. Optics Express. 2017, 25(7): 7161-7169.

【10】Chen M, Fan F, Yang L, et al. Mechanically tunable terahertz plasmonic waveguide filter [J]. Chinese Journal of Lasers. 2016, 43(4): 0411001.
陈猛, 范飞, 杨磊, 等. 机械可调谐太赫兹等离子体波导滤波器 [J]. 中国激光. 2016, 43(4): 0411001.

【11】Li X K, Tang S W, Ding F, et al. Switchable multifunctional terahertz metasurfaces employing vanadium dioxide [J]. Scientific Reports. 2019, 9(1): 5413-5454.

【12】Song Z Y, Wei M L, Wang Z S, et al. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces [J]. IEEE Photonics Journal. 2019, 11(2): 1-7.

【13】Gao H, Yah F P, Tan S Y, et al. Design of ultra-thin broadband terahertz metamaterial absorber based on patterned graphene [J]. Chinese Journal of Lasers. 2017, 44(7): 0703024.
高红, 延凤平, 谭思宇, 等. 基于有图案石墨烯的超薄宽带太赫兹超材料吸收体的设计 [J]. 中国激光. 2017, 44(7): 0703024.

【14】Huang X, He W, Yang F, et al. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime [J]. Optics Express. 2018, 26(20): 25558-25566.

【15】Li J H, Zhang Y T, Li J N, et al. Frequency-switchable VO2-based coding metasurfaces at the terahertz band [J]. Optics Communications. 2020, 458: 124744.

【16】Hu N, Wu F L, Bian L, et al. Dual broadband absorber based on graphene metamaterial in the terahertz range [J]. Optical Materials Express. 2018, 8(12): 3899-3909.

【17】Zhou Y X, Huang Y Y, Jin Y P, et al. Terahertz properties of graphene and graphene-based terahertz devices [J]. Chinese Journal of Lasers. 2019, 46(6): 0614011.
周译玄, 黄媛媛, 靳延平, 等. 石墨烯太赫兹波段性质及石墨烯基太赫兹器件 [J]. 中国激光. 2019, 46(6): 0614011.

【18】Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator [J]. Nature. 2011, 474(7349): 64-67.

【19】Li J S, Yan D X, Sun J Z. Flexible dual-band all-graphene-dielectric terahertz absorber [J]. Optical Materials Express. 2019, 9(5): 2067-2075.

【20】Ding F, Dai J, Chen Y T, et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals [J]. Scientific Reports. 2016, 6: 39445.

【21】Huang J, Li J N, Yang Y, et al. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide [J]. Optics Express. 2020, 28(5): 7018-7027.

【22】Zhao Y, Huang Q P, Cai H L, et al. A broadband and switchable VO2-based perfect absorber at the THz frequency [J]. Optics Communications. 2018, 426: 443-449.

【23】Smith D R, Vier D C. KoschnyT, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials [J]. Physical Review E. 2005, 71(3 Pt 2B): 036617.

【24】Wang T L, Zhang Y P, Zhang H Y, et al. Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial [J]. Optical Materials Express. 2020, 10(2): 369-386.

【25】Li J X, Yu P, Tang C C, et al. Bidirectionalperfect absorber using free substrate plasmonic metasurfaces [J]. Advanced Optical Materials. 2017, 5(12): 1700152.

【26】Piper J R, Fan S H. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance [J]. ACS Photonics. 2014, 1(4): 347-353.

【27】Cui Z J, Wang Y, Zhu D Y, et al. Perfect absorption conditions and absorption characteristics of terahertz metamaterial absorber [J]. Chinese Journal of Lasers. 2019, 46(6): 0614023.
崔子健, 王玥, 朱冬颖, 等. 太赫兹超材料吸收器的完美吸收条件与吸收特性 [J]. 中国激光. 2019, 46(6): 0614023.

【28】Zhang Q, Bai L H, Bai Z Y, et al. Theoretical analysis and design of a near-infrared broadband absorber based on EC model [J]. Optics Express. 2015, 23(7): 8910-8917.

【29】Li J S, Sun J Z. Umbrella-shaped graphene/Si for multi-band tunable terahertz absorber [J]. Applied Physics B. 2019, 125(9): 1-7.

引用该论文

Li Hui,Yu Jiang,Chen Zhe. Broadband Tunable Terahertz Absorber Based on Hybrid Graphene-Vanadium Dioxide Metamaterials[J]. Chinese Journal of Lasers, 2020, 47(9): 0903001

李辉,余江,陈哲. 基于混合石墨烯-二氧化钒超材料的太赫兹可调宽带吸收器[J]. 中国激光, 2020, 47(9): 0903001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF