首页 > 论文 > 中国激光 > 46卷 > 9期(pp:911002--1)

采用TDLAS技术的玉米种子活力快速无损分级检测

Rapid Nondestructive Grading Detection of Maize Seed Vigor Using TDLAS Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

如何快速、无损地检测种子活力是目前种子研究领域的热点和难点。基于种子呼吸与种子活力的关系搭建了基于可调谐半导体激光吸收高光谱(TDLAS)技术的种子活力快速无损检测系统,该系统主要由分布反馈式激光器及其控制电路、光电转换及放大电路、数据采集电路、上位机软件以及基于多次反射池结构的种子呼吸CO2浓度检测池构成。检测池的容积为1.5 L,光程为16 m,激光光源波段为2004 nm。基于朗伯比尔定律,采用波长调制吸收光谱技术利用二次谐波反演出种子呼吸过程中产生的CO2浓度。根据种子呼吸CO2浓度的大小确定种子活力的强弱,并将其与发芽出苗实验获得的活力指数进行对比。实验结果表明:CO2呼吸强度的变化量与种子活力等级指数的相关性在0.9以上,即基于TDLAS技术的种子活力快速无损检测系统能够精准、无损、高效地反映种子活力的强弱。这一研究为采用TDLAS技术进行种子活力无损检测分级提供了有益探索。

Abstract

Quick and nondestructive detection of seed vigor is a popular and difficult task in the seed research field. Based on the relationship between seed respiration and seed vigor, we proposed a rapid non-destructive testing system for seed vigor based on TDLAS technique. The proposed system comprises a distributed feedback laser and its control circuit, a photoelectric conversion and amplification circuit, a data acquisition circuit, an upper computer software, and a seed breathing carbon dioxide (CO2) concentration detection pool based on a multi-reflection pool structure. The detection pool has a volume of 1.5 L, a light path of 16 m, and a laser source band of 2004 nm. Based on Lambert Beer''s law, we use wavelength modulated absorption spectroscopy and second harmonic generation to invert the CO2 concentration generated during seed respiration. Seed vigor is determined according to the concentration of CO2 in seed respiration, and the vigor index obtained from the germination and seedling emergence experiment is compared and validated. The experimental results show that the correlation between the change of CO2 respiratory intensity and seed vigor grade index is greater than 0.9, i.e., the rapid non-destructive testing system for seed vigor based on TDLAS technique can accurately, nondestructively, and efficiently reflect the seed vigor grade. This study provides useful exploration in non-destructive testing and grading of seed vigor using TDLAS technique.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0911002

所属栏目:光谱学

基金项目:国家自然科学基金、浙江省重点研发项目、湖州市自然科学基金;

收稿日期:2019-04-12

修改稿日期:2019-05-13

网络出版日期:2019-09-01

作者单位    点击查看

贾良权:湖州师范学院信息工程学院, 浙江 湖州 313000
祁亨年:湖州师范学院信息工程学院, 浙江 湖州 313000
胡文军:湖州师范学院信息工程学院, 浙江 湖州 313000
赵光武:浙江农林大学农业与食品科学学院, 浙江 杭州 311000
阚瑞峰:中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
高璐:湖州师范学院信息工程学院, 浙江 湖州 313000
郑雯:浙江农林大学农业与食品科学学院, 浙江 杭州 311000
许琴:湖州师范学院信息工程学院, 浙江 湖州 313000

联系人作者:阚瑞峰(rfkan@ciomp.ac.cn)

备注:国家自然科学基金、浙江省重点研发项目、湖州市自然科学基金;

【1】Perry D A. Report of the vigour test committee 1974-1977. Seed Science and Technology. 6(1), 159-181(1978).

【2】Huang Z C and Huang S Z. Study on non-destructive method in seed vigor determination:Ⅱ the relationship between respiratory rate and cabbage seed vigor. Seed. 17(5), 3-5(1998).
黄真池, 黄上志. 不破坏种子活力测定方法研究:Ⅱ种子活力与呼吸速率的关系. 种子. 17(5), 3-5(1998).

【3】Yu Z, Fang F, Peng Z D et al. New technologies for detecting seed vigor. Seed. 31(8), 52-55(2012).
于征, 方芳, 彭祚登 等. 基于新兴技术的种子活力检测方法研究. 种子. 31(8), 52-55(2012).

【4】Jia W and Mao P S. Review on the near infrared spectroscopy in seed quality testing research. Seed. 32(11), 46-51(2013).
贾婉, 毛培胜. 近红外光谱技术在种子质量检测方面的研究进展. 种子. 32(11), 46-51(2013).

【5】Zhu L W, Ma W G, Hu J et al. Advances of NIR spectroscopy technology applied in seed quality detection. Spectroscopy and Spectral Analysis. 35(2), 346-349(2015).
朱丽伟, 马文广, 胡晋 等. 近红外光谱技术检测种子质量的应用研究进展. 光谱学与光谱分析. 35(2), 346-349(2015).

【6】Li H H, Lu W, Du C W et al. Study on rapid and non-destructive detection of rice seed vigor based on photoacoustic spectroscopy combined with LS-SVR. Chinese Journal of Lasers. 42(11), (2015).
李欢欢, 卢伟, 杜昌文 等. 基于光声光谱结合LS-SVR的稻种活力快速无损检测方法研究. 中国激光. 42(11), (2015).

【7】Song L, Wang Q, Wang C Y et al. Qualitative analysis of single rice seed vigor using near infrared reflectance spectroscopy. Grain Storage. 44(1), 20-23(2015).
宋乐, 王琦, 王纯阳 等. 基于近红外光谱的单粒水稻种子活力快速无损检测. 粮食储藏. 44(1), 20-23(2015).

【8】Yu D, Cheng W M, Wang Q et al. Construction of analysis model of rice seed components based on near infrared reflectance spectroscopy. The Journal of Light Scattering. 27(4), 384-389(2015).
余鼎, 程维民, 王琦 等. 基于近红外光谱技术的水稻种子成分分析模型的建立. 光散射学报. 27(4), 384-389(2015).

【9】Zhang T T, Zhao B, Yang L M et al. Determination of wheat seeds vigor based on electronic nose. Journal of China Agricultural University. 23(9), 123-130(2018).
张婷婷, 赵宾, 杨丽明 等. 基于电子鼻技术的小麦种子活力鉴别. 中国农业大学学报. 23(9), 123-130(2018).

【10】Wu X F, Zhao G W and Qi H N. Inspect rice seed vigor of conventional rice by hyperspectral imaging with chemometric methods. Journal of Anhui Agricultural Sciences. 45(29), 12-14(2017).
吴小芬, 赵光武, 祁亨年. 高光谱技术在常规水稻种子活力检测中的应用. 安徽农业科学. 45(29), 12-14(2017).

【11】Jiang C Y, Sun M X, Li Y X et al. Breath analysis using laser spectroscopy techniques: development and future. Chinese Journal of Lasers. 45(2), (2018).
姜琛昱, 孙美秀, 李迎新 等. 激光光谱技术在呼吸气体分析中的发展与未来. 中国激光. 45(2), (2018).

【12】Nie W, Kan R F, Yang C G et al. Research progress on the application of tunable diode laser absorption spectroscopy. Chinese Journal of Lasers. 45(9), (2018).
聂伟, 阚瑞峰, 杨晨光 等. 可调谐二极管激光吸收光谱技术的应用研究进展. 中国激光. 45(9), (2018).

【13】Zhang Z R, Sun P S, Pang T et al. Application of laser absorption spectroscopy for identification gases in industrial production processes and early safety warning. Optics and Precision Engineering. 26(8), 1925-1937(2018).
张志荣, 孙鹏帅, 庞涛 等. 激光吸收光谱技术在工业生产过程及安全预警标识性气体监测中的应用. 光学精密工程. 26(8), 1925-1937(2018).

【14】Lu H, Zhang G, Zhang G X et al. Study on simultaneous detection of CO2 and H2O based on TDLAS. Jiangsu Science & Technology Information. 35(5), 41-43(2018).
陆恒, 张刚, 张国贤 等. 基于TDLAS的二氧化碳和水汽同时检测技术研究. 江苏科技信息. 35(5), 41-43(2018).

【15】Li M, Guo J J, Ye W Q et al. Study on TDLAS system with a miniature multi-pass cavity for CO2 measurements. Spectroscopy and Spectral Analysis. 38(3), 697-701(2018).
李萌, 郭金家, 叶旺全 等. 基于微型多次反射腔的TDLAS二氧化碳测量系统. 光谱学与光谱分析. 38(3), 697-701(2018).

【16】Zhang K K, Liu S X, Chen S Z et al. TDLAS carbon dioxide concentration detection system and its pressure compensation Instrument Technique and Sensor. 2016(1), 53-55, 69(0).
张可可, 刘世萱, 陈世哲 等. 基于TDLAS的二氧化碳浓度检测系统及压强补偿研究 仪表技术与传感器. 2016(1), 53-55, 69(0).

【17】Yuan S, Kan R F, He Y B et al. Tunable diode laser spectroscopy system for carbon dioxide monitoring. Chinese Journal of Lasers. 41(12), (2014).
袁松, 阚瑞峰, 何亚柏 等. 基于可调谐半导体激光光谱大气CO2监测仪. 中国激光. 41(12), (2014).

【18】Lu W Y, Zhu X R, Li Y S et al. Comparison of direct absorption and wavelength modulation methods for online measurement of CO2 by TDLAS. Infrared and Laser Engineering. 47(7), (2018).
卢伟业, 朱晓睿, 李越胜 等. TDLAS直接吸收法和波长调制法在线测量CO2的比较. 红外与激光工程. 47(7), (2018).

【19】Chen J Y, Liu J G, Zhang Y J et al. Methane sensor based on tunable diode laser absorption spectroscopy. Journal of Atmospheric and Environmental Optics. 2(2), 146-149(2007).
陈玖英, 刘建国, 张玉钧 等. 一种基于TDLAS谐波探测技术的甲烷传感器. 大气与环境光学学报. 2(2), 146-149(2007).

【20】Zhao M F, Tang P, Tang B et al. Research on denoising of UV-vis spectral data for water quality detection with compressed sensing theory based on wavelet transform. Spectroscopy and Spectral Analysis. 38(3), 844-850(2018).
赵明富, 唐平, 汤斌 等. 基于小波变换的压缩感知理论对水质检测紫外-可见光谱数据的去噪研究. 光谱学与光谱分析. 38(3), 844-850(2018).

【21】Zhang Z F, Zou D B, Chen W L et al. Temperature influence in the TDLAS detection of escaping ammonia. Opto-Electronic Engineering. 41(6), 32-37(2014).
张增福, 邹得宝, 陈文亮 等. TDLAS逃逸氨检测中温度影响的研究. 光电工程. 41(6), 32-37(2014).

【22】Li Z, Liao T Q, Feng Q C et al. A system design on cucumber seed vigor index detection based on image processing. Seed. 34(6), 111-115(2015).
李振, 廖同庆, 冯青春 等. 基于图像处理技术的黄瓜种子活力指数检测系统设计. 种子. 34(6), 111-115(2015).

引用该论文

Liangquan Jia,Hengnian Qi,Wenjun Hu,Guangwu Zhao,Ruifeng Kan,Lu Gao,Wen Zheng,Qin Xu. Rapid Nondestructive Grading Detection of Maize Seed Vigor Using TDLAS Technique[J]. Chinese Journal of Lasers, 2019, 46(9): 0911002

贾良权,祁亨年,胡文军,赵光武,阚瑞峰,高璐,郑雯,许琴. 采用TDLAS技术的玉米种子活力快速无损分级检测[J]. 中国激光, 2019, 46(9): 0911002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF