首页 > 论文 > 中国激光 > 47卷 > 7期(pp:701003--1)

单模半导体纳米线激光器 (特邀综述) (封底文章)

Single-Mode Semiconductor Nanowire Lasers (Invited) (Back Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着通信行业的快速扩张以及光互联、片上实验室等技术的发展,人们对激光器等器件集成化、小型化的需求日益增长。半导体纳米线激光器由于其独特的一维结构与灵活的带隙调控性能等特点,在微纳激光器领域受到广泛研究。实现单模输出的半导体纳米线激光器,对光互联、传感、光谱学以及干涉测量等领域具有重要意义。综述了单模半导体纳米线激光器的基本技术与研究进展。介绍了半导体纳米线激光器的常用材料,并利用圆介质波导模型分析了其基本模式特性,详细阐述了半导体纳米线实现单模激光输出的主要方法以及发展现状,并对各方案面临的挑战进行了总结。

Abstract

With the rapid expansion of the communication industry and the development of technologies, such as optical interconnection and on-chip experiments, there is a growing demand for integration and miniaturization of devices such as lasers. Semiconductor nanowire lasers have been widely studied in the field of micro/nano-lasers due to their unique one-dimensional structure and flexible bandgap control performance. Semiconductor nanowire lasers with single-mode output are of great significance in the fields of optical interconnection, sensing, spectroscopy, and interferometry. This article reviews the basic technology and research progress of single-mode semiconductor nanowire lasers. First, the common materials of semiconductor nanowire lasers are introduced, and the basic mode characteristics are analyzed using the circular dielectric waveguide model. Subsequently, the main methods and development status of semiconductor nanowires achieving single-mode laser output are elaborated. Finally, the challenges faced by each scheme are summarized.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248.4

DOI:10.3788/CJL202047.0701003

所属栏目:“半导体激光器”专题

基金项目:国家自然科学基金、浙江省杰出青年基金、浙江大学教育基金会国际一流伙伴基金;

收稿日期:2020-03-20

修改稿日期:2020-05-26

网络出版日期:2020-07-01

作者单位    点击查看

片思杰:浙江大学现代光学仪器国家重点实验室, 浙江大学光电科学与工程学院, 教育部光子学国际合作联合实验室, 浙江 杭州 310027之江实验室, 浙江 杭州 310000
SalmanUllah:浙江大学现代光学仪器国家重点实验室, 浙江大学光电科学与工程学院, 教育部光子学国际合作联合实验室, 浙江 杭州 310027之江实验室, 浙江 杭州 310000
杨青:浙江大学现代光学仪器国家重点实验室, 浙江大学光电科学与工程学院, 教育部光子学国际合作联合实验室, 浙江 杭州 310027之江实验室, 浙江 杭州 310000
马耀光:浙江大学现代光学仪器国家重点实验室, 浙江大学光电科学与工程学院, 教育部光子学国际合作联合实验室, 浙江 杭州 310027之江实验室, 浙江 杭州 310000

联系人作者:杨青(qingyang@zju.edu.cn); 马耀光(mayaoguang@zju.edu.cn);

备注:国家自然科学基金、浙江省杰出青年基金、浙江大学教育基金会国际一流伙伴基金;

【1】Maiman T. Stimulated optical radiation in ruby [J]. Nature. 1960, 187(4736): 493-494.

【2】Eldada L A. Optical communication components [J]. Review of Scientific Instruments. 2004, 75(3): 575-593.

【3】Werle P. A review of recent advances in semiconductor laser based gas monitors [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 1998, 54(2): 197-236.

【4】Holmstr?m S T S, Baran U, Urey H. MEMS laser scanners: a review [J]. Journal of Microelectromechanical Systems. 2014, 23(2): 259-275.

【5】Miller D A B. Device requirements for optical interconnects to silicon chips [J]. Proceedings of the IEEE. 2009, 97(7): 1166-1185.

【6】Lee Y H, Jewell J L, Scherer A, et al. Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes [J]. Electronics Letters. 1989, 25(20): 1377-1378.

【7】Yang L, Armani D K, Vahala K J. Fiber-coupled erbium microlasers on a chip [J]. Applied Physics Letters. 2003, 83(5): 825-826.

【8】Painter O, Lee R K, Scherer A, et al. Two-dimensional photonic band-gap defect mode laser [J]. Science. 1999, 284(5421): 1819-1821.

【9】Cao H, Zhao Y G, Ho S T, et al. Random laser action in semiconductor powder [J]. Physical Review Letters. 1999, 82(11): 2278-2281.

【10】Huang M H. Room-temperature ultraviolet nanowire nanolasers [J]. Science. 2001, 292(5523): 1897-1899.

【11】Gu F X, Xie F M, Lin X, et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering [J]. Light: Science & Applications. 2017, 6(10): e17061.

【12】Gather M C, Yun S H. Single-cell biological lasers [J]. Nature Photonics. 2011, 5(7): 406-410.

【13】Tang S K Y, Li Z Y, Abate A R, et al. A multi-color fast-switching microfluidic droplet dye laser [J]. Lab on a Chip. 2009, 9(19): 2767-2771.

【14】Kuehne A J C, Gather M C, Eydelnant I A, et al. A switchable digital microfluidic droplet dye-laser [J]. Lab on a Chip. 2011, 11(21): 3716-3719.

【15】Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems [J]. Physical Review Letters. 2003, 90(2): 027402.

【16】Yang L, Duan Z Y, Ma L H, et al. Surface plasmon polariton nanolasers [J]. Laser & Optoelectronics Progress. 2019, 56(20): 202409.
杨琳, 段智勇, 马刘红, 等. 表面等离子激元纳米激光器综述 [J]. 激光与光电子学进展. 2019, 56(20): 202409.

【17】Wang Z B, Dong W. Hybrid surface plasmonic nano-laser at communication wavelength [J]. Chinese Journal of Lasers. 2018, 45(4): 0401013.
王志斌, 董伟. 通信波长下混合表面等离子体纳米激光器的研究 [J]. 中国激光. 2018, 45(4): 0401013.

【18】Smit M, van der Tol J, Hill M. Moore''''s law in photonics [J]. Laser & Photonics Reviews. 2012, 6(1): 1-13.

【19】Leuthold J, Hoessbacher C, Muehlbrandt S, et al. Plasmonic communications:light on a wire [J]. Optics & Photonics News. 2013, 24(5): 28-35.

【20】He L N, Ozdemir ? K, Zhu J G, et al. Detecting single viruses and nanoparticles using whispering gallery microlasers [J]. Nature Nanotechnology. 2011, 6(7): 428-432.

【21】Martino N. Kwok S J J, Liapis A C, et al. Micron-sized laser particles for massively multiplexed cellular labelling and tracking . [C]∥2018 Conference on Lasers and Electro-Optics (CELO), May 13-18, 2018, San Jose, California, United States. Washington: Optical Society of America. 2018, JTh5C: 6.

【22】Ma R M, Ota S, Li Y M, et al. Explosives detection in a lasing plasmon nanocavity [J]. Nature Nanotechnology. 2014, 9(8): 600-604.

【23】Ning C Z. Semiconductor nanolasers and the size-energy-efficiency challenge: a review [J]. Advanced Photonics. 2019, 1(1): 014002.

【24】Gao H, Fu A, Andrews S C, et al. Cleaved-coupled nanowire lasers [J]. Proceedings of the National Academy of Sciences of the United States of America. 2013, 110(3): 865-869.

【25】Yang Z Y, Albrow-Owen T, Cui H X, et al. Single-nanowire spectrometers [J]. Science. 2019, 365(6457): 1017-1020.

【26】Xiao Y, Meng C, Wang P, et al. Single-nanowire single-mode laser [J]. Nano Letters. 2011, 11(3): 1122-1126.

【27】Lang X K, Jia P, Chen Y Y, et al. Advances in narrow linewidth diode lasers [J]. Science China Information Sciences. 2019, 62(6): 61401.

【28】Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers [J]. Nature. 2003, 421(6920): 241-245.

【29】Chu S, Wang G P, Zhou W H, et al. Electrically pumped waveguide lasing from ZnO nanowires [J]. Nature Nanotechnology. 2011, 6(8): 506-510.

【30】Li K, Liu X H, Wang Q, et al. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature [J]. Nature Nanotechnology. 2015, 10(2): 140-144.

【31】Le B H, Liu X H, Tran N H, et al. An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser [J]. Optics Express. 2019, 27(4): 5843-5850.

【32】Ma Y G, Guo X, Wu X Q, et al. Semiconductor nanowire lasers [J]. Advances in Optics and Photonics. 2013, 5(3): 216-273.

【33】Eaton S W, Fu A, Wong A B, et al. Semiconductor nanowire lasers [J]. Nature Reviews Materials. 2016, 1(6): 16028.

【34】Johnson J C, Yan H Q, Schaller R D, et al. Single nanowire lasers [J]. The Journal of Physical Chemistry B. 2001, 105(46): 11387-11390.

【35】Johnson J C, Choi H, Knutsen K P, et al. Single gallium nitride nanowire lasers [J]. Nature Materials. 2002, 1(2): 106-110.

【36】Ding J, Zapien J A, Chen W, et al. Lasing in ZnS nanowires grown on anodic aluminum oxide templates [J]. Applied Physics Letters. 2004, 85(12): 2361-2363.

【37】Cao B L, Jiang Y, Wang C, et al. Synthesis and lasing properties of highly ordered CdS nanowire arrays [J]. Advanced Functional Materials. 2007, 17(9): 1501-1506.

【38】Pan A L, Liu R B, Zhang Q L, et al. Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts [J]. Journal of Physical Chemistry C. 2007, 111(38): 14253-14256.

【39】Chin A H, Vaddiraju S, Maslov A V, et al. Near-infrared semiconductor subwavelength-wire lasers [J]. Applied Physics Letters. 2006, 88(16): 163115.

【40】Hua B, Motohisa J, Kobayashi Y, et al. Single GaAs/GaAsP coaxial core-shell nanowire lasers [J]. Nano Letters. 2009, 9(1): 112-116.

【41】Saxena D, Wang F, Gao Q, et al. Mode profiling of semiconductor nanowire lasers [J]. Nano Letters. 2015, 15(8): 5342-5348.

【42】Mayer B, Rudolph D, Schnell J, et al. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature [J]. Nature Communications. 2013, 4(1): 2931.

【43】Scofield A C, Kim S H, Shapiro J N, et al. Bottom-up photonic crystal lasers [J]. Nano Letters. 2011, 11(12): 5387-5390.

【44】Liu Y K, Zapien J A, Shan Y Y, et al. Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons [J]. Advanced Materials. 2005, 17(11): 1372-1377.

【45】Liu Y, Zapien J A, Shan Y, et al. Wavelength-tunable lasing in single-crystal CdS1-xSex nanoribbons [J]. Nanotechnology. 2007, 18(36): 365606.

【46】Yang Z Y, Wang D L, Meng C, et al. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires [J]. Nano Letters. 2014, 14(6): 3153-3159.

【47】Chen R, Tran T D, Ng K W, et al. Nanolasers grown on silicon [J]. Nature Photonics. 2011, 5(3): 170-175.

【48】Pan A L, Liu R B, Sun M H, et al. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate [J]. ACS Nano. 2010, 4(2): 671-680.

【49】Johnson J C, Yan H Q, Yang P D, et al. Optical cavity effects in ZnO nanowire lasers and waveguides [J]. Journal of Physical Chemistry B. 2003, 107(34): 8816-8828.

【50】Pauzauskie P J, Sirbuly D J, Yang P D. Semiconductor nanowire ring resonator laser [J]. Physical Review Letters. 2006, 96(14): 143903.

【51】Wei W, Liu Y G, Zhang X, et al. Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers [J]. Applied Physics Letters. 2014, 104(22): 223103.

【52】Nobis T, Grundmann M. Low-order optical whispering-gallery modes in hexagonal nanocavities [J]. Physical Review A. 2005, 72(6): 063806.

【53】Xu H W, Wright J B, Hurtado A, et al. Gold substrate-induced single-mode lasing of GaN nanowires [J]. Applied Physics Letters. 2012, 101(22): 221114.

【54】Xu H W, Wright J B, Luk T S, et al. Single-mode lasing of GaN nanowire-pairs [J]. Applied Physics Letters. 2012, 101(11): 113106.

【55】Maslov A V, Ning C Z. Reflection of guided modes in a semiconductor nanowire laser [J]. Applied Physics Letters. 2003, 83(6): 1237-1239.

【56】Maslov A V, Ning C Z. Far-field emission of a semiconductor nanowire laser [J]. Optics Letters. 2004, 29(6): 572-574.

【57】Zimmler M A, Capasso F, Muller S, et al. Optically pumped nanowire lasers: invited review [J]. Semiconductor Science and Technology. 2010, 25(2): 024001.

【58】Yang Q, Ding Y, Dai W, et al. 47(3): 03SC08 [J]. silicon oxide micro-fiber ring knot composite structure laser. Laser & Optoelectronics Progress. 2010.
杨青, 丁晔, 戴威, 等. 47(3): 03SC08 [J]. . 半导体纳米线和氧化硅微光纤环型结复合结构激光器. 激光与光电子学进展. 2010.

【59】Gradecak S, Qian F, Li Y, et al. GaN nanowire lasers with low lasing thresholds [J]. Applied Physics Letters. 2005, 87(17): 173111.

【60】Qian F, Li Y, Gradecak S, et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers [J]. Nature Materials. 2008, 7(9): 701-706.

【61】Li Q M, Wright J B, Chow W W, et al. Single-mode GaN nanowire lasers [J]. Optics Express. 2012, 20(16): 17873-17879.

【62】Saxena D, Mokkapati S, Parkinson P, et al. Optically pumped room-temperature GaAs nanowire lasers [J]. Nature Photonics. 2013, 7(12): 963-968.

【63】Xu P Z, Liu S, Tang M, et al. Highly polarized single mode nanobelt laser [J]. Applied Physics Letters. 2017, 110(20): 201112.

【64】Xu E M, Zhang X L, Zhou L N, et al. Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops [J]. Optics Letters. 2010, 35(8): 1242-1244.

【65】Xiao Y, Meng C, Wu X Q, et al. Single mode lasing in coupled nanowires [J]. Applied Physics Letters. 2011, 99(2): 023109.

【66】Ren D D, Ahtapodov L, Nilsen J S, et al. Single-mode near-infrared lasing in a GaAsSb-based nanowire superlattice at room temperature [J]. Nano Letters. 2018, 18(4): 2304-2310.

【67】Wright J B, Campione S, Liu S, et al. Distributed feedback gallium nitride nanowire lasers [J]. Applied Physics Letters. 2014, 104(4): 041107.

【68】Yang Y, Zong H, Ma C, et al. Self-selection mechanism of Fabry-Pérot micro/nanoscale wire cavity for single-mode lasing [J]. Optics Express. 2017, 25(18): 21025-21036.

【69】Yang Y, Wei T T, Zhu R, et al. Tunable single-mode lasing in a single semiconductor microrod [J]. Optics Express. 2018, 26(23): 30021-30029.

【70】Kim H, Lee W, Farrell A C, et al. Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature [J]. Nano Letters. 2017, 17(6): 3465-3470.

【71】Kim H, Lee W, Farrell A C, et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator [J]. Nano Letters. 2017, 17(9): 5244-5250.

【72】Chen L, Towe E. Photonic band gaps in nanowire superlattices [J]. Applied Physics Letters. 2005, 87(10): 103111.

【73】Chen L, Towe E. Nanowire lasers with distributed-Bragg-reflector mirrors [J]. Applied Physics Letters. 2006, 89(5): 053125.

【74】Tatebayashi J, Kako S, Ho J, et al. Growth of InGaAs/GaAs nanowire-quantum dots on AlGaAs/GaAs distributed Bragg reflectors for laser applications [J]. Journal of Crystal Growth. 2017, 468: 144-148.

【75】Svendsen G K, Weman H, Skaar J. Investigations of Bragg reflectors in nanowire lasers [J]. Journal of Applied Physics. 2012, 111(12): 123102.

【76】Fu A, Gao H W, Petrov P N, et al. Widely tunable distributed Bragg reflectors integrated into nanowire waveguides [J]. Nano Letters. 2015, 15(10): 6909-6913.

【77】Barrelet C J, Bao J M, Loncar M, et al. Hybrid single-nanowire photonic crystal and microresonator structures [J]. Nano Letters. 2006, 6(1): 11-15.

【78】Lee T P, Burrus C, Wilt D P. Measured spectral linewidth of variable-gap cleaved-coupled-cavity lasers [J]. Electronics Letters. 1985, 21(2): 53-54.

【79】Fan W, Gan J L, Zhang Z S, et al. Narrow linewidth single frequency microfiber laser [J]. Optics Letters. 2012, 37(20): 4323-4325.

【80】Ditcovski R, Ellenbogen T. Spectral shaping of lasing in vertically aligned coupled nanowire lasers [J]. Optics Express. 2017, 25(24): 30115-30123.

【81】Zhang C H, Zou C L, Dong H Y, et al. Dual-color single-mode lasing in axially coupled organic nanowire resonators [J]. Science Advances. 2017, 3(7): e1700225.

【82】Ta V D, Chen R, Sun H D. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing [J]. Advanced Optical Materials. 2014, 2(3): 220-225.

【83】Zhuge M H, Yang Z Y, Zhang J P, et al. Fiber-integrated reversibly wavelength-tunable nanowire laser based on nanocavity mode coupling [J]. ACS Nano. 2019, 13(9): 9965-9972.

【84】Moser P, Lott J A, Wolf P, et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s [J]. Electronics Letters. 2012, 48(20): 1292-1294.

【85】Qin F F, Xu C X, Zhu Q X, et al. Optical performance improvement in hydrothermal ZnO/graphene structures for ultraviolet lasing [J]. Journal of Materials Chemistry C. 2018, 6(13): 3240-3244.

【86】Zhang J Y, Zhang Q F, Deng T S, et al. Electrically driven ultraviolet lasing behavior from phosphorus-doped p-ZnO nanonail array/n-Si heterojunction [J]. Applied Physics Letters. 2009, 95(21): 211107.

【87】Frost T, Jahangir S, Stark E, et al. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon [J]. Nano Letters. 2014, 14(8): 4535-4541.

【88】Liu X Y, Shan C X, Wang S P, et al. Electrically pumped random lasers fabricated from ZnO nanowire arrays [J]. Nanoscale. 2012, 4(9): 2843-2846.

【89】Zhao S, Liu X H, Wu Y, et al. An electrically pumped 239 nm AlGaN nanowire laser operating at room temperature [J]. Applied Physics Letters. 2016, 109(19): 191106.

【90】Yang Z L, Pelton M, Fedin I, et al. A room temperature continuous-wave nanolaser using colloidal quantum Wells [J]. Nature Communications. 2017, 8(1): 143.

【91】Hu Y, Li H L, Wang D K, et al. Surface modification and optical properties of ZnO nanowires [J]. Chinese Journal of Lasers. 2018, 45(10): 1003002.
胡颖, 李浩林, 王登魁, 等. ZnO纳米线表面改性及其光学性质 [J]. 中国激光. 2018, 45(10): 1003002.

【92】Gao M, Li H L, Wang D K, et al. Effects of Ar plasma treatment on photoluminescence properties of GaAs nanowires [J]. Chinese Journal of Lasers. 2019, 46(2): 0211005.
高美, 李浩林, 王登魁, 等. Ar等离子体处理对GaAs纳米线发光特性的影响 [J]. 中国激光. 2019, 46(2): 0211005.

引用该论文

Pian Sijie,Salman Ullah,Yang Qing,Ma Yaoguang. Single-Mode Semiconductor Nanowire Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701003

片思杰,SalmanUllah,杨青,马耀光. 单模半导体纳米线激光器[J]. 中国激光, 2020, 47(7): 0701003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF