首页 > 论文 > 中国激光 > 47卷 > 9期(pp:906002--1)

光纤延迟环型射频存储技术的优化研究

Optimization of RF Memory Techniques Using Optical Delay-Time Loops

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光纤延迟环型射频存储技术因其大瞬时带宽、快速响应能力等优势在电子干扰领域备受关注。为了实现复杂脉冲信号的多样式存储,先后实现了移频型、门控半导体光放大器(SOA)型、级联型等不同光纤延迟环结构,通过对延迟环结构的对比分析和优化设计,获得了高保真、高分辨率、长时延、脉宽可重构的多功能存储方案。级联存储结构,实现了超过2000次脉冲复制、大于500 μs的高分辨率长时延存储,以及200 ns~10 μs的脉宽重构,可广泛应用于大范围脉宽、快速长时延存储和复杂调制格式等不同场景中。

Abstract

Optical delay-time loop-based radio frequency (RF) memory technology has received considerable attention in the field of electronic jamming owing to its broad instantaneous bandwidth and fast response time. To obtain a multipattern memory of complex RF pulse signals, different types of optical delay-time loop-based memory structures such as frequency shifting type, gated semiconductor optical amplifier (SOA) type, and cascade type have been successively realized. Through the comparison and optimization of delay-time loop-based structures, the storage schemes with high fidelity, high resolution, long delay and the reconfiguration of pulse width can be realized. More than 2000 pulse replications, storage with high resolution and time greater than 500 μs, and 200 ns--10 μs pulse-width reconstruction can be achieved in the cascaded structure, which can be applied in different application scenarios such as a wide range of pulse widths, complex modulation formats, and fast and long delay storage.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN29

DOI:10.3788/CJL202047.0906002

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金;

收稿日期:2020-03-23

修改稿日期:2020-04-23

网络出版日期:2020-09-01

作者单位    点击查看

丁志丹:中国科学院上海光学精密机械研究所中国科学院空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学, 北京 100049
杨飞:中国科学院上海光学精密机械研究所中国科学院空间激光信息传输与探测技术重点实验室, 上海 201800
赵洁珺:中国科学院上海光学精密机械研究所中国科学院空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学, 北京 100049
吴瑞:中国科学院上海光学精密机械研究所中国科学院空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学, 北京 100049
蔡海文:中国科学院上海光学精密机械研究所中国科学院空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学, 北京 100049

联系人作者:杨飞(fyang@siom.ac.cn); 蔡海文(fyang@siom.ac.cn);

备注:国家自然科学基金;

【1】Schleher D C. Electronic warfare in the information age [M]. [S. l.]: Artech House, Inc. 1999.

【2】Soumekh M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[C]∥IEEE International Radar Conference, May 9-12, 2005, Arlington, VA, USA. New York: , 2005, 507-512.

【3】Yang Q L, Zhang Y H, Gu X. Wide-band chaotic noise signal for velocity estimation and imaging of high-speed moving targets [J]. Progress in Electromagnetics Research B. 2015, 63: 1-15.

【4】Berger S D. Digital radio frequency memory linear range gate stealer spectrum [J]. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(2): 725-735.

【5】Baldwinson J, Antipov I. Prediction of electronic attack effectiveness against Maritime Patrol Radars[C]∥2008 International Conference on Radar, September 2-5, 2008, Adelaide, SA, Australia. New York: , 2008, 259-264.

【6】Manz B. DRFM grow to meet new threats [J]. Journal of Electronic Defense. 2010, 33(8): 45-48.

【7】Capmany J, Novak D. Microwave photonics combines two worlds [J]. Nature Photonics. 2007, 1(6): 319-330.

【8】Wang J, Hou P P, Cai H W, et al. Continuous angle steering of an optically-controlled phased array antenna based on differential true time delay constituted by micro-optical components [J]. Optics Express. 2015, 23(7): 9432-9439.

【9】Liu T, Liu J, Deng X, et al. Research on fiber-based time and frequency transfer [J]. Journal of Time and Frequency. 2016, 39(3): 207-215.
刘涛, 刘杰, 邓雪, 等. 光纤时间频率信号传递研究 [J]. 时间频率学报. 2016, 39(3): 207-215.

【10】Yu L Q, Wang R, Lu L, et al. Radio frequency transfer over 100 km optical fiber by a passive stabilization scheme . [C]∥Asia Communications and Photonics Conference 2016. Washington, D.C.: OSA. 2016, 1-3.

【11】Nagano S, Kumagai M, Ito H, et al. Phase coherent transfer and retrieval of terahertz frequency standard via optical fiber with 10-18-level accuracy and stability[C]∥2017 42nd International Conference on Infrared, August 27-September 1, 2017, Cancun, Mexico. New York: , 2017, 1-2.

【12】Li Q, Du C, Li X, et al. Microwave photonic down-conversion system based on stimulated Brillouin scattering effect [J]. Chinese Journal of Lasers. 2019, 46(7): 0701006.
李强, 都聪, 李想, 等. 基于受激布里渊散射效应的微波光子下变频系统 [J]. 中国激光. 2019, 46(7): 0701006.

【13】Wang D, Pi H Y, Li X, et al. Measurement andanalysis of loss in fiber Bragg gratings [J]. Chinese Journal of Lasers. 2018, 45(6): 0606004.
王迪, 皮浩洋, 李璇, 等. 光纤布拉格光栅损耗特性的测量与分析 [J]. 中国激光. 2018, 45(6): 0606004.

【14】Li C X, Zhang B F, Lu L, et al. Microwave photonic frequency conversion and phase-shifting technology of photoelectronic oscillator loop [J]. Chinese Journal of Lasers. 2019, 46(1): 0101001.
李诚鑫, 张宝富, 卢麟, 等. 光电振荡环路的微波光子变频与移相技术研究 [J]. 中国激光. 2019, 46(1): 0101001.

【15】Nguyen L V. Photonic radio frequency memory-design issues and possible solutions[R] . Edinburgh: DSTO Systems Laboratory. 2003.

【16】Nguyen T A. Chan E H W, Minasian R A. Photonicradio frequency memory using frequency shifting recirculating delay line structure [J]. Journal of Lightwave Technology. 2014, 32(1): 99-106.

【17】Ding Z D, Yang F, Zhao J J, et al. Photonic high-fidelity storage and Doppler frequency shift of broadband RF pulse signals [J]. Optics Express. 2019, 27(23): 34359-34369.

引用该论文

Ding Zhidan,Yang Fei,Zhao Jiejun,Wu Rui,Cai Haiwen. Optimization of RF Memory Techniques Using Optical Delay-Time Loops[J]. Chinese Journal of Lasers, 2020, 47(9): 0906002

丁志丹,杨飞,赵洁珺,吴瑞,蔡海文. 光纤延迟环型射频存储技术的优化研究[J]. 中国激光, 2020, 47(9): 0906002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF