首页 > 论文 > 光学学报 > 40卷 > 18期(pp:1834001--1)

变能量X射线融合图像的增强算法研究

Enhancement Algorithm of Variable Energy X-Ray Fusion Images

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

变能量X射线成像技术是实现大厚度比目标内部信息检测的重要方法。该方法利用递变管电压获取工件不同厚度区域的透照子图,通过融合获取能够完整表征工件结构信息的高动态范围数字图像。但是受限于显示设备的动态范围,融合的高动态范围X射线图像的细节无法得到有效显示。针对上述问题,利用X射线图像重点表征突变结构信息的特点,提出基于图像梯度非线性增强的算法,通过增强图像中的灰度变化信息来实现图像增强。同时,结合图像的多分辨特性,实现了不同分辨率层级梯度图像的增强和融合,从而有效保留并增强不同变化程度的目标结构信息。最后,对大厚度比目标进行变能量X射线成像,并对融合的高动态范围图像进行增强处理,结果表明,所提方法能够有效实现高动态范围图像结构信息的增强。

Abstract

Variable energy X-ray imaging technology is an important method to realize the internal information detection of large thickness ratio targets. This method can use the gradually changing tube voltage to obtain the trans-illumination sub-graphs of different thickness regions in the workpiece, and then the high dynamic range digital image, which can completely represent the structural information of the workpiece, is realized by fusion. However, due to the limited dynamic range of the display device, the details in the fused high dynamic range X-ray image cannot be displayed effectively. In view of the above problem, we use the characteristic that one X-ray image mainly shows the information of a mutation structure and propose the algorithm based on nonlinear enhancement of image gradients. This algorithm uses the gray-scale change information in the enhanced image to achieve image enhancement and meanwhile is combined with the multi-resolution characteristics of the image to realize the enhancement and fusion of gradient images with different resolution levels, and thus the retention and enhancement of structural information with different degrees of change are realized. Finally, the experiment is designed to image a large thickness ratio target by variable energy X-ray and to enhance the fused high dynamic range image. The results show that this method can be used to effectively enhance the structural information of a high dynamic range image.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O434

DOI:10.3788/AOS202040.1834001

所属栏目:X射线光学

收稿日期:2020-04-08

修改稿日期:2020-06-11

网络出版日期:2020-09-01

作者单位    点击查看

刘宾:中北大学信息与通信工程学院, 山西 太原 030051
赵鹏翔:中北大学信息与通信工程学院, 山西 太原 030051
赵霞:中北大学信息与通信工程学院, 山西 太原 030051
张立超:中北大学信息与通信工程学院, 山西 太原 030051

联系人作者:赵霞(zhaoxia0316@nuc.edu.cn)

【1】Chen P, Han Y, Pan J X. Multi-voltage image stack reconstruction in X-ray digital imaging [J]. Optik -International Journal for Light and Electron Optics. 2013, 124(18): 3265-3268.

【2】Liu B, Han Y, Pan J X, et al. Multi-energy image sequence fusion based on variable energy X-ray imaging [J]. Journal of X-Ray Science and Technology. 2014, 22(2): 241-251.

【3】Li Y H, Han Y, Chen P. X-ray energy self-adaption high dynamic range (HDR) imaging based on linear constraints with variable energy [J]. IEEE Photonics Journal. 2018, 10(2): 1-14.

【4】Li H X, Chen X D, Wang Y, et al. Sparse CT reconstruction based on multi-direction anisotropic total variation (MDATV) [J]. Biomedical Engineering Online. 2014, 13(1): 92.

【5】Song T M, Yang J M, Yi R Q. Recover soft X-ray spectrum using virtual flat response channels with filtered X-ray diode array [J]. Review of Scientific Instruments. 2012, 83(11): 113102.

【6】Fei P, Yu Z L, Wang X, et al. High dynamic range optical projection tomography (HDR-OPT) [J]. Optics Express. 2012, 20(8): 8824-8836.

【7】Zhao C, Hu W W. New algorithm for X-ray image enhancement [J]. Transducer and Microsystem Technology. 2017, 36(5): 71-73.
赵存, 胡炜薇. 一种X射线图像增强新方法 [J]. 传感器与微系统. 2017, 36(5): 71-73.

【8】Xi Z H, Zhao L F. Highly dynamic range image enhancement algorithm [J]. Computer Applications and Software. 2014, 31(5): 202-205, 255.
席志红, 赵蓝飞. 高动态范围图像增强算法 [J]. 计算机应用与软件. 2014, 31(5): 202-205, 255.

【9】Zhou C, Liu H, Zhao A L, et al. Industrial X-ray image enhancement algorithm based on gradient field [J]. Journal of Computer Applications. 2019, 39(10): 3088-3092.
周冲, 刘欢, 赵爱玲, 等. 基于梯度场的工业X射线图像增强算法 [J]. 计算机应用. 2019, 39(10): 3088-3092.

【10】Liu B, Wang L M, Su X Y. X-ray radiographic imaging technique with high dynamic range [J]. Spectroscopy and Spectral Analysis. 2014, 34(4): 1104-1108.
刘宾, 王黎明, 苏新彦. 高动态范围X射线成像检测方法 [J]. 光谱学与光谱分析. 2014, 34(4): 1104-1108.

【11】Zhao X, Liu B. Study on calculation method of the weighted coefficient in X-ray imaging based on variable energy [J]. Acta Optica Sinica. 2015, 35(7): 0711003.
赵霞, 刘宾. 变能量X射线成像方法中权系数计算方法研究 [J]. 光学学报. 2015, 35(7): 0711003.

【12】Wei J T, Han Y, Chen P. Multi-voltage X-ray image sequence fusion based on selection of valid region [J]. Journal of Measurement Science and Instrumentation. 2016, 7(4): 358-362.

引用该论文

Liu Bin,Zhao Pengxiang,Zhao Xia,Zhang Lichao. Enhancement Algorithm of Variable Energy X-Ray Fusion Images[J]. Acta Optica Sinica, 2020, 40(18): 1834001

刘宾,赵鹏翔,赵霞,张立超. 变能量X射线融合图像的增强算法研究[J]. 光学学报, 2020, 40(18): 1834001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF