首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1016001--1)

Ge-Sb-S硫系玻璃的飞秒激光诱导损伤研究

Femtosecond Laser-Induced Damage on Ge-Sb-S Chalcogenide Glass

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

硫系玻璃具有宽的红外透光范围、高的线性和非线性折射率,以及良好的热稳定性,近年来备受关注[1-12]。其中,利用非线性硫系玻璃光波导(包括光纤和平面波导)产生中红外超连续谱(SC)是研究热点之一[1,3-4,6,9-10],其主要目的是获得用于光学相干层析、光谱测量、生物医学诊断等领域的高亮度宽带中红外光源。实验证明[1,3-4],采用超短脉冲抽运硫系光波导是产生宽带中红外超连续谱的有效方法。目前,研究人员已在硫基、硒基和碲基硫系光波导中分别产生了覆盖1.5~7 μm[13]、2~14 μm[4]和2~16 μm[6]的中红外超连续谱,几乎达到了相应波导的传输光谱范围极限。为了获得具有实际应用价值的高亮度中红外超连续谱,非线性硫系光波导须采用高平均功率的光源进行抽运,如高重复频率皮秒/飞秒激光器[14-15]或高能量超连续谱光源[10]。迄今为止,在硫基、硒基和碲基硫系光波导中产生超连续谱的最高平均功率分别为1390 mW、417 mW和1 mW[10,16]。相关实验表明,在硫系光波导中产生超连续谱的输出功率主要受波导材料激光损伤阈值(LDT)的限制。为了揭示相关损伤机理,从而为提高材料的抗激光损伤性能提供指导,近年来研究人员对几种硫系玻璃在飞秒激光辐照下的损伤进行了研究。Messaddeq等[17]使用34 fs激光脉冲(806 nm,1 kHz)辐照Ge25Ga1As9S65玻璃,研究了损伤区的表面形貌,结果发现:在损伤初期(脉冲数≤50),观察到了周期性的表面波纹结构;当脉冲数>100后,热积累效应导致玻璃软化,使得波纹结构逐渐消失。You等[18]研究了中红外飞秒激光脉冲(3~5 μm,150 fs,1 kHz) 对As2S3和As2Se3玻璃的损伤,认为损伤起初是由导带电子的积累引起的,随后被热积累驱动。Zhang等[19]测量了几种化学计量配比的As2S3-GeS2玻璃在150 fs激光脉冲(3 μm, 1 kHz) 辐照下的损伤阈值,发现锗含量较高的玻璃具有较好的抗激光损伤性能。然而,目前的文献还鲜有涉及高重复频率(>10 kHz)激光飞秒脉冲引起的硫系玻璃的损伤;此外,硫系玻璃的飞秒激光诱导损伤阈值与化学组成的关系尚不明确。

Abstract

The exposure of high-nonlinearity chalcogenide glass fibers to ultrashort pulses is an important approach for achieving broadband mid-infrared supercontinuum (SC). The average output power of a generated SC is mainly limited by the laser damage threshold (LDT) of the material. In this work, the laser damage characteristics of the germanium-antimony-sulfur (Ge-Sb-S) chalcogenide glass are studied using a laser with a pulse width of 216 fs, a central wavelength of 1030 nm, and a repetition rate of 1-1000 kHz to elucidate the composition dependence of the LDT of the chalcogenide glass as well as the mechanisms of damage to the material exposed to irradiation pulses with different repetition rates. Results show that the LDT of the Ge-Sb-S glass decreases with increasing repetition rate of the irradiation pulse. The glass with high average bond energy is found to have a high LDT, and its stoichiometric composition exhibits optimal resistance to optical damage. When the repetition rate of laser irradiation pulse is less than 10 kHz, the glass is observed to be mainly damaged by avalanche ionization. In contrast, thermal accumulation is the dominant factor promoting damage when the repetition rate of the irradiation pulse exceeds 10 kHz.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1016001

所属栏目:材料

基金项目:国家重点研发专项、国家自然科学基金、江苏高校优势学科建设工程、江苏省先进激光技术与新兴产业协同创新中心资助项目;

收稿日期:2019-05-10

修改稿日期:2019-06-03

网络出版日期:2019-10-01

作者单位    点击查看

李铜铜:江苏师范大学物理与电子工程学院, 江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
张鸣杰:江苏师范大学物理与电子工程学院, 江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
田康振:江苏师范大学物理与电子工程学院, 江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
张翔:苏州大学光电科学与工程学院, 苏州纳米科技协同创新中心, 江苏 苏州215006江苏省先进光学制造技术重点实验室和教育部现代光学技术重点实验室, 江苏 苏州215006
袁孝:苏州大学光电科学与工程学院, 苏州纳米科技协同创新中心, 江苏 苏州215006江苏省先进光学制造技术重点实验室和教育部现代光学技术重点实验室, 江苏 苏州215006
杨安平:江苏师范大学物理与电子工程学院, 江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
杨志勇:江苏师范大学物理与电子工程学院, 江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116苏州大学光电科学与工程学院, 苏州纳米科技协同创新中心, 江苏 苏州215006江苏省先进光学制造技术重点实验室和教育部现代光学技术重点实验室, 江苏 苏州215006

联系人作者:杨志勇(yangzhiyong@jsnu.edu.cn)

备注:国家重点研发专项、国家自然科学基金、江苏高校优势学科建设工程、江苏省先进激光技术与新兴产业协同创新中心资助项目;

【1】Petersen C R, M?ller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics. 8(11), 830-834(2014).

【2】Wang X M, Yang C F, Dai S X et al. Spectroscopic analysis of ethanol solution detection with Ge15Sb20Se65 chalcogenide glass tapered fiber. Acta Optica Sinica. 38(6), (2018).
王晓美, 杨晨风, 戴世勋 等. 拉锥Ge15Sb20Se65硫系玻璃光纤对乙醇溶液检测的光谱分析研究. 光学学报. 38(6), (2018).

【3】Yu Y, Gai X, Ma P et al. Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide. Optics Letters. 41(5), 958-961(2016).

【4】Cheng T L, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Optics Letters. 41(9), 2117-2120(2016).

【5】Wang X F, Yang J F, Yan X T et al. Fabrication and optical performances measurements of flexible chalcogenide imaging fiber bundles. Optics and Precision Engineering. 25(12), 3137-3144(2017).
王形锋, 杨建峰, 闫兴涛 等. 柔性硫系玻璃红外光纤传像束的制备与性能测试. 光学精密工程. 25(12), 3137-3144(2017).

【6】Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber. Laser & Photonics Reviews. 11(2), (2017).

【7】Qi S S, Zhang B, Zhai C C et al. High-resolution chalcogenide fiber bundles for longwave infrared imaging. Optics Express. 25(21), 26160-26165(2017).

【8】Wang X G, Jiao K, Chen P et al. Preparation of wide-band gap Ge-Se chalcohalide glass and its fiber properties. Acta Optica Sinica. 39(4), (2019).
王弦歌, 焦凯, 陈朋 等. 宽带隙Ge-Se基硫卤玻璃的制备及其光纤性能. 光学学报. 39(4), (2019).

【9】Mo K D, Zhai B, Li J F et al. Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers. Chinese Physics B. 26(5), (2017).

【10】Martinez R A, Plant G, Guo K W et al. Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers. Optics Letters. 43(2), 296-299(2018).

【11】Zhou T F, Zhu Z C, Liu X H et al. A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics. Micromachines. 9(7), (2018).

【12】Cui J, Xiao X S, Xu Y T et al. Mid-infrared emissions of Dy 3+doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser . Optical Materials Express. 8(8), 2089-2102(2018).

【13】Wang Y Y, Dai S X, Li G T et al. 1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime. Optics Letters. 42(17), 3458-3461(2017).

【14】Gattass R R, Brandon Shaw L, Nguyen V Q et al. All-fiber chalcogenide-based mid-infrared supercontinuum source. Optical Fiber Technology. 18(5), 345-348(2012).

【15】Kedenburg S, Steinle T, M?rz F et al. High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber. Optics Letters. 40(11), 2668-2671(2015).

【16】Zhao Z M, Wang X S, Dai S X et al. 1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber. Optics Letters. 41(22), 5222-5225(2016).

【17】Messaddeq S H, Vallée R, Soucy P et al. Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation. Optics Express. 20(28), 29882-29889(2012).

【18】You C Y, Dai S X, Zhang P Q et al. Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses. Scientific Reports. 7, (2017).

【19】Zhang Y, Xu Y S, You C Y et al. Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses. Optics Express. 25(8), 8886-8895(2017).

【20】Choi J W, Han Z H, Sohn B U et al. Nonlinear characterization of GeSbS chalcogenide glass waveguides. Scientific Reports. 6, (2016).

【21】Yang Y, Chen Y X, Liu Y H et al. Tailoring structure and property of Ge-As-S chalcogenide glass. Acta Physica Sinica. 65(12), (2016).
杨艳, 陈云翔, 刘永华 等. Ge-As-S硫系玻璃的结构与性能调控. 物理学报. 65(12), (2016).

【22】Zhang B, Yu Y, Zhai C C et al. High brightness 2.2-12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber. Journal of the American Ceramic Society. 99(8), 2565-2568(2016).

【23】Schaffer C B, Brodeur A and Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Measurement Science and Technology. 12(11), 1784-1794(2001).

【24】Lenzner M, Krüger J, Sartania S et al. Femtosecond optical breakdown in dielectrics. Physical Review Letters. 80(18), 4076-4079(1998).

【25】Qiu J R. Femtosecond laser processing technology: fundamentals and applications. 23-34(2018).
邱建荣. 飞秒激光加工技术: 基础与应用. 23-34(2018).

【26】et al. . Far infrared spectra and bonding arrangement in some Ge-Sb-S glasses. Physica Status Solidi (a). 181(1), 199-209(2000).

【27】Li Z B, Lin C G, Qu G S et al. Phase separation in nonstoichiometry Ge-Sb-S chalcogenide glasses. Journal of the American Ceramic Society. 97(3), 793-797(2014).

【28】Yao Y B, Xie T and Gao Y M. Shanghai: Shanghai Scientific & Technical Publishers. 105-112(1985).
姚允斌, 解涛, 高英敏. 物理化学手册. 105-112(1985).

【29】Luo Y R. Handbook of chemical bond energy. 263-302(2005).
罗渝然. 化学键能数据手册. 263-302(2005).

引用该论文

Tongtong Li,Mingjie Zhang,Kangzhen Tian,Xiang Zhang,Xiao Yuan,Anping Yang,Zhiyong Yang. Femtosecond Laser-Induced Damage on Ge-Sb-S Chalcogenide Glass[J]. Acta Optica Sinica, 2019, 39(10): 1016001

李铜铜,张鸣杰,田康振,张翔,袁孝,杨安平,杨志勇. Ge-Sb-S硫系玻璃的飞秒激光诱导损伤研究[J]. 光学学报, 2019, 39(10): 1016001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF